首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   16篇
  2024年   1篇
  2023年   1篇
  2021年   3篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   11篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1966年   1篇
排序方式: 共有120条查询结果,搜索用时 265 毫秒
91.
Clostridium perfringens, one of the most common causes of food poisonings, can carry the enterotoxin gene, cpe, in its chromosome or on a plasmid. C. perfringens food poisonings are more frequently caused by the chromosomal cpe-carrying strains, while the plasmid-borne cpe-positive genotypes are more commonly found in the human feces and environmental samples. Different tolerance to food processing conditions by the plasmid-borne and chromosomal cpe-carrying strains has been reported, but the reservoirs and contamination routes of enterotoxin-producing C. perfringens remain unknown. A comparative genomic hybridization (CGH) analysis with a DNA microarray based on three C. perfringens type A genomes was conducted to shed light on the epidemiology of C. perfringens food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains by comparing chromosomal and plasmid-borne cpe-positive and cpe-negative C. perfringens isolates from human, animal, environmental, and food samples. The chromosomal and plasmid-borne cpe-positive C. perfringens genotypes formed two distinct clusters. Variable genes were involved with myo-inositol, ethanolamine and cellobiose metabolism, suggesting a new epidemiological model for C. perfringens food poisonings. The CGH results were complemented with growth studies, which demonstrated different myo-inositol, ethanolamine, and cellobiose metabolism between the chromosomal and plasmid-borne cpe-carrying strains. These findings support a ubiquitous occurrence of the plasmid-borne cpe-positive strains and their adaptation to the mammalian intestine, whereas the chromosomal cpe-positive strains appear to have a narrow niche in environments containing degrading plant material. Thus the epidemiology of the food poisonings caused by two populations appears different, the plasmid-borne cpe-positive strains probably contaminating foods via humans and the chromosomal strains being connected to plant material.  相似文献   
92.
93.
We examined morphological and genetic differences among Fennoscandian deer ked (Lipoptena cervi L, Hippoboscidae) populations with varying expansion history: the eastern population (Finland) has expanded rapidly, whereas the western population is divided into an old and relatively stationary sub‐population in Sweden and a newly established and more expansive sub‐population in Norway. The genetic analysis suggests that the distinct populations represent a single species. Individuals from expansive populations were characterized by a large body size, relatively large and robust thorax shape, and wing shape with an exaggerated basal posterior margin. Yet, there was no among population variation in relative wing size or its elongated shape after variation in overall size was controlled for. Although certain size and shape variables showed thermal sensitivity, the degree of plasticity did not differ between the populations. In general, we observed that shape is more sensitive to external thermal conditions at the pupal stage than size per se, with the thermal sensitivity of the latter depending on the trait under examination. We conclude that the possible adaptive value of morphological differences relies on variation in survival during the off‐host life stages or short‐distance flight to reach a susceptible host instead of long‐distance dispersal ability.  相似文献   
94.
95.
Invasive generalist ectoparasites provide a tool to study factors affecting expansion rates. An increase in the number of host species may facilitate geographic range expansion by increasing the number of suitable habitats and by affecting local extinction and colonization rates. A geographic perspective on parasite host specificity and its implications on range expansion are, however, insufficiently understood. We conducted a field study to explore if divergent host specificity could explain the observed variation in expansion rates between Fennoscandian populations of the deer ked (Lipoptena cervi), which is a blood-feeding ectoparasitic fly of cervids. We found that the rapidly expanding eastern population in Finland appears to specialize on moose, whereas the slowly expanding western population in Norway breeds successfully on both moose and roe deer. The eastern population was also found to utilize the wild forest reindeer as an auxiliary host, but this species is apparently of low value for L. cervi in terms of adult maintenance, reproductive output and offspring quality. Abundant numbers of roe deer and white-tailed deer were observed to be apparently uninfected in Finland, suggesting that host use is not a plastic response to host availability, but rather a consequence of population-level evolutionary changes. Locally compatible hosts were found to be the ones sharing a long history with the deer ked in the area. Cervids that sustained adult deer keds also allowed successful reproduction. Thus, host use is probably determined by the ability of the adult to exploit particular host species. We conclude that a wide host range alone does not account for the high expansion rate or wide geographic distribution of the deer ked, although loose ecological requirements would increase habitat availability.  相似文献   
96.
Ascending aortic aneurysm is a connective tissue disorder. Even though multiple novel gene mutations have been identified, risk profiling and diagnosis before rupture still represent a challenge. There are studies demonstrating shorter telomere lengths in the blood leukocytes of abdominal aortic aneurysm patients. The aim of this study was to measure whether relative telomere lengths are changed in the blood leukocytes of ascending aortic aneurysm patients. We also studied the expression of telomerase in aortic tissue samples of ascending aortic aneurysms. Relative lengths of leukocyte telomeres were determined from blood samples of patients with ascending aortic aneurysms and compared with healthy controls. Telomerase expression, both at the level of mRNA and protein, was quantified from the aortic tissue samples. Mean relative telomere length was significantly longer in ascending aortic aneurysm blood samples compared with controls (T/S ratio 0.87 vs. 0.61, p<0.001). Expressions of telomerase mRNA and protein were elevated in the aortic aneurysm samples (p<0.05 and p<0.01). Our study reveals a significant difference in the mean length of blood leukocyte telomeres in ascending aortic aneurysm and controls. Furthermore, expression of telomerase, the main compensating factor for telomere loss, is elevated at both the mRNA and protein level in the samples of aneurysmal aorta. Further studies will be needed to confirm if this change in telomere length can serve as a tool for assessing the risk of ascending aortic aneurysm.  相似文献   
97.
The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood‐associated species. This is especially alarming given the important role wood‐inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad‐leaved‐dominated, herb‐rich forests are threatened habitats which have high wood‐inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man‐made afforested fields are novel habitats that could potentially be important for wood‐inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood‐inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb‐rich forests, four birch‐dominated wood pastures, and four birch‐dominated afforested field sites in central Finland. As predicted, natural herb‐rich forests were the most species‐rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications: In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man‐made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood‐associated species, and thus complement the existing conservation network of natural forests.  相似文献   
98.
Co‐inheritance in life‐history traits may result in unpredictable evolutionary trajectories if not accounted for in life‐history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life‐history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that these two traits are co‐inherited around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8–3.5 90% CI) times higher for fish with the early‐maturing vgll3 genotype (EE) compared to fish with the late‐maturing genotype (LL). The L allele was dominant in individuals remaining only one year at sea before maturation, but the dominance was reversed, with the E allele being dominant in individuals maturing after two or more years at sea. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first‐time spawners, across all age groups, whereas this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life‐history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.  相似文献   
99.
100.
Comparative genomic hybridization analysis of 32 Nordic group I Clostridium botulinum type B strains isolated from various sources revealed two homogeneous clusters, clusters BI and BII. The type B strains differed from reference strain ATCC 3502 by 413 coding sequence (CDS) probes, sharing 88% of all the ATCC 3502 genes represented on the microarray. The two Nordic type B clusters differed from each other by their response to 145 CDS probes related mainly to transport and binding, adaptive mechanisms, fatty acid biosynthesis, the cell membranes, bacteriophages, and transposon-related elements. The most prominent differences between the two clusters were related to resistance to toxic compounds frequently found in the environment, such as arsenic and cadmium, reflecting different adaptive responses in the evolution of the two clusters. Other relatively variable CDS groups were related to surface structures and the gram-positive cell wall, suggesting that the two clusters possess different antigenic properties. All the type B strains carried CDSs putatively related to capsule formation, which may play a role in adaptation to different environmental and clinical niches. Sequencing showed that representative strains of the two type B clusters both carried subtype B2 neurotoxin genes. As many of the type B strains studied have been isolated from foods or associated with botulism, it is expected that the two group I C. botulinum type B clusters present a public health hazard in Nordic countries. Knowing the genetic and physiological markers of these clusters will assist in targeting control measures against these pathogens.Clostridium botulinum produces a potent neurotoxin during its growth. The toxin causes a potentially lethal paralytic disease, botulism, in humans and animals. The classical food-borne botulism follows the consumption of toxin-containing food or drink, while infant and adult intestinal botulism results from in vivo spore germination, outgrowth, and toxin production in the gut. Apart from attenuated intestinal microbial population, other factors affecting the colonization of C. botulinum in the intestinal forms of botulism are not known.Based on their physiology and genetic background, C. botulinum strains are divided into groups I to IV (13). Strains of groups I and II are associated with human disease. Group I strains produce neurotoxin serotypes A, B, and/or F, while the group II strains produce type B, E, or F toxin. Physiologically, groups I and II differ markedly from each other as well as from groups III and IV. Genomic analysis of group I and II C. botulinum strains by 16S rrn sequencing (13), ribotyping (10), and amplified fragment length polymorphism (11, 15, 16) is consistent with the divergent physiologies of the two groups (18).Nordic C. botulinum group I strains show a remarkable homogeneity (15, 20, 21, 23). In a large pulsed-field gel electrophoresis (PFGE) analysis, the majority of group I strains isolated from various sources from Finland, Norway, and Denmark formed type B neurotoxin and clustered into two large groups, with the members of each group sharing identical or nearly identical restriction patterns (20, 23). Many of these strains were recovered from honey for human consumption (23), and one strain was related to an infant botulism case (22). Apart from a recent study showing that strains of the two type B clusters, further referred to as clusters BI and BII, differ in their abilities to grow at extreme temperatures (12), the physiological, epidemiological, and genetic markers of the two clusters are not known. An understanding of such traits will assist in designing control measures against these potential food- and environment-borne pathogens.The availability of group I C. botulinum genome sequences has enabled the construction of whole-genome DNA microarrays and a comprehensive genomic analysis of C. botulinum strains (26, 27). In this paper, we describe a comparative genomic hybridization (CGH) analysis of 32 Nordic group I C. botulinum type B cluster BI or BII strains with a DNA microarray based on the protein-coding sequences (CDS) in the ATCC 3502 genome. Strains within each cluster showed no substantial variation. Furthermore, strains belonging to the two clusters differed by their responses to 145 CDS probes, suggesting differential resistance to toxic compounds and a relatively large antigenic variability. Sequencing of botB in a representative cluster BI strain and a representative cluster BII strain revealed subtype B2 neurotoxin genes in both strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号