首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   18篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   7篇
  2014年   8篇
  2013年   8篇
  2012年   12篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 906 毫秒
111.
112.
The Penaeus vannamei nodavirus (PvNV), which causes muscle necrosis in Penaeus vannamei from Belize, was identified in 2005. Infected shrimp show clinical signs of white, opaque lesions in the tail muscle. Under transmission electron microscopy, the infected cells exhibit increases in various organelles, including mitochondria, Golgi stacks, and rough endoplasmic reticulum. Cytoplasmic inclusions containing para-crystalline arrays of virions were visualized. The viral particle is spherical in shape and 19 to 27 nm in diameter. A cDNA library was constructed from total RNA extracted from infected shrimp. Through nucleotide sequencing from the cDNA clones and northern blot hybridization, the PvNV genome was shown to consist of 2 segments: RNA1 (3111 bp) and RNA2 (1183 bp). RNA1 contains 2 overlapped open reading frames (ORF A and B), which may encode a RNA-dependent RNA polymerase (RdRp) and a B2 protein, respectively. RNA2 contains a single ORF that may encode the viral capsid protein. Sequence analyses showed the presence of 4 RdRp characteristic motifs and 2 conserved domains (RNA-binding B2 protein and viral coat protein) in the PvNV genome. Phylogenetic analysis based on the translated amino acid sequence of the RdRp reveals that PvNV is a member of the genus Alphanodavirus and closely related to Macrobrachium rosenbergii nodavirus (MrNV). In a study investigating potential PvNV vectors, we monitored the presence of PvNV by RT-PCR in seabird feces and various aquatic organisms collected around a shrimp farm in Belize. PvNV was detected in mosquitofish, seabird feces, barnacles, and zooplankton, suggesting that PvNV can be spread via these carriers.  相似文献   
113.

Background  

The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin.  相似文献   
114.

Background  

Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.  相似文献   
115.
The majority of knowledge about the role of cytokines and chemokines in controlling Mycobacterium tuberculosis infection mainly derives from animal models. In humans, this knowledge is still mainly limited to the blood compartment or accessible lymphoid organs, such as tonsils. Here, we studied cytokine and chemokine production and their modulation by M. tuberculosis antigens in mononuclear cells from human blood, spleen and hilar lung lymph nodes. Results show that the kinetics and magnitude of cytokine and chemokine production varied according to the tissue of cell origin. Mycobacterium tuberculosis antigens enhanced cytokine and chemokine production in blood, but the enhancement was restricted in spleen and hilar lung lymph node cells. We show, for the first time in humans, differences in cytokine and chemokine microenvironments according to lymphoid tissues, and suggest that these differences may affect the way cells respond to M. tuberculosis infection.  相似文献   
116.
Monitoring mosquito populations is essential to designing and implementing control strategies. Recent strategies based on releasing biologically modified mosquitoes have increased the need to effectively monitor mosquito abundance. Unfortunately, existing surveillance traps are of limited value due to their high cost and low capture rates. Here, we report the results of experiments designed to evaluate the effectiveness of an acoustic trap prototype. Stimuli synthesized from recordings of Ae. aegypti wingbeat signals and pure tones were evaluated as attractants to males in indoor and semi‐field conditions. Overall, the acoustic trap´s efficacy differed significantly between indoor and semi‐field conditions. After two hours of indoor recapture, ~69% of males were collected from acoustic traps broadcasting pure tones while ~78% of males were collected using synthesized wingbeat signals. Under semi‐field conditions, however, acoustic traps collected less than ~1.7% of the males released. Increasing the intensity of the signals up to 90 dB (SPL re. 20 uPa at 1 m from the trap) did not improve the capture rate under semi‐field conditions. Overall, our results indicate that acoustic signals synthesized from recordings of wingbeats can be used to enhance capture of male Ae. aegypti.  相似文献   
117.
AMT/Mep ammonium transporters mediate high affinity ammonium/ammonia uptake in bacteria, fungi, and plants. The Arabidopsis AMT1 proteins mediate uptake of the ionic form of ammonium. AMT transport activity is controlled allosterically via a highly conserved cytosolic C terminus that interacts with neighboring subunits in a trimer. The C terminus is thus capable of modulating the conductivity of the pore. To gain insight into the underlying mechanism, pore mutants suppressing the inhibitory effect of mutations in the C-terminal trans-activation domain were characterized. AMT1;1 carrying the mutation Q57H in transmembrane helix I (TMH I) showed increased ammonium uptake but reduced capacity to take up methylammonium. To explore whether the transport mechanism was altered, the AMT1;1-Q57H mutant was expressed in Xenopus oocytes and analyzed electrophysiologically. AMT1;1-Q57H was characterized by increased ammonium-induced and reduced methylammonium-induced currents. AMT1;1-Q57H possesses a 100× lower affinity for ammonium (Km) and a 10-fold higher Vmax as compared with the wild type form. To test whether the trans-regulatory mechanism is conserved in archaeal homologs, AfAmt-2 from Archaeoglobus fulgidus was expressed in yeast. The transport function of AfAmt-2 also depends on trans-activation by the C terminus, and mutations in pore-residues corresponding to Q57H of AMT1;1 suppress nonfunctional AfAmt-2 mutants lacking the activating C terminus. Altogether, our data suggest that bacterial and plant AMTs use a conserved allosteric mechanism to control ammonium flux, potentially using a gating mechanism that limits flux to protect against ammonium toxicity.All organisms depend on an adequate supply of nutrients, especially nitrogen. For microorganisms and plants, which are able to assimilate ammonium, NH4+ represents the sole bioavailable nitrogen form. (Nitrate use requires enzymatic conversion to ammonia.) Plants preferentially take up ammonium; however, overaccumulation of NH4+ is toxic to microorganisms and plants (1, 2.) Levels above 50 μm become toxic for the central nervous system of most mammals (3, 4). A precise homeostasis of the cellular levels of ammonium is therefore critical.Plant ammonium uptake is mediated by low affinity/high capacity and high affinity/low capacity transporters (5). Nonselective cation channels (2), potassium channels (6), and members of the aquaporin family appear to be able to mediate NH3/NH4+ low affinity uptake (79). High affinity uptake by transporters of the AMT/Mep superfamily is essential at supply levels in the micromolar to low millimolar range (1012). AMT/Mep ammonium transporter genes were originally identified in yeast and plants by complementation of a yeast mutant deficient in ammonium uptake (13, 14). In contrast to potassium channels, which do not effectively differentiate between potassium and ammonium, AMTs are highly selective for ammonium and its methylated form, methylammonium (MeA).6 Plant AMT1 ammonium transporters were shown to be electrogenic when expressed in Xenopus oocytes, suggesting transport of charged NH4+ or co-transport of NH3 with a proton (15). Quantitation of charge movement and tracer uptake demonstrated that AMT1 transports exclusively the ionic form, i.e. each transported 14C-MeA molecule corresponded to the transfer of a single positive elementary charge across the membrane (16). The high affinity and low capacity of AMT1, which is too slow to be classified as a channel, suggests that it rather functions as a transporter, with significant conformational changes limiting its turnover numbers. Interestingly, it has been suggested that the bacterial homologs use a different mechanism, in that they mediate transport of uncharged NH3 (17), although this hypothesis has been disputed (18, 19).Biochemical as well as structural analyses of bacterial and archaeal AMTs revealed a highly stable and conserved trimeric complex (15). Each monomer is composed of 11 transmembrane helices (TMHs) that form a noncontinuous channel through which the substrate can pass. Highly conserved residues are observed in positions that are likely crucial for function: a tryptophan located in a central extracellular surface cleft is thought to be part of a selectivity filter, discriminating K+ ions and water molecules from NH4+ via a cation-π interaction and H-bonds via neighboring residues. Below this cleft, a pair of phenylalanines is assumed to function as a gate that blocks the entrance of the channel, which, after that point, appears open to the cytoplasmic side. Two histidines on helices V and VI are in H-bonding distance and line the central part of the channel pathway.Similar to the bacterial Na+/leucine and the Na+/arabinose transporters (20, 21), AMT monomers are built from an ancient duplication of a subunit of five TMHs, organized as a pseudo-2-fold axis in the membrane plane; in the case of the AMT/Meps, an additional 11th segment M11 (5 + 5 + 1), a 50-Å α-helix, belts the surface of the monomer at an angle of ∼50° relative to the normal vector of the membrane plane and connects to the cytosolic C terminus (17, 23, 24). Recent findings demonstrate that AMTs can exist in active and inactive states, probably controlled by phosphorylation of residues in the conserved C terminus (25).7 In the Arabidopsis thaliana AMT1, an allosteric trans-activation is mediated through the interaction of the C termini with cytosolic loops of the neighboring subunits in a trimer (25). This finding is consistent with a novel regulatory mechanism that can provide for rapid shut-off of transport. This feedback loop may potentially be important for protection against ammonium toxicity by limiting peak output, namely ammonium uptake capacity at high external supply. Analysis of >900 AMT homologs shows that the C terminus is highly conserved from cyanobacteria to fungi and plants, indicating that the regulatory mechanism may be conserved (25).A suppressor screen using inactive mutants carrying a mutation in the cytosolic C terminus of AMT1;1 identified mutants that had lost their strict dependence on allosteric trans-activation (25). Here, we show that, when expressed in yeast, some of these mutants show increased ammonium transport capacity. Electrophysiological analysis of one of the pore mutants, AMT1;1-Q57H, demonstrates that transport is still electrogenic and that the increased ammonium sensitivity is due to a conversion from a saturable high affinity kinetic profile to low affinity and high capacity uptake kinetics. Mutation of the corresponding glutamine residue (Q53H) also suppresses an inactive mutant of the archaeal Archaeoglobus fulgidus AfAmt-2, demonstrating the conservation of these mechanisms from archaea to higher plants.  相似文献   
118.
119.
120.
Abstract. Adults of different species of the genus Papilio can easily be mated by hand-pairing. The data on egg hatchability, adult formation and F1 fertility in these interspecific hybrids show notable variations according to the crosses. Using these data, values of a differentiation index for each cross were calculated. These estimates of genetic distance were then used to study the phylo-genetic relationships of the species involved. The data are consistent with the existence of the following groups, each consisting of closely related species: the black Papilio supergroup, the Papilio memnon group, the P.demoleus group, the P.xuthus group, the P.machaon group, the P.bianor group, the P.glaucus group and the P.troilus group. The phylogenetic relationships revealed by these data generally coincide with the relationships established by classical taxonomy. In cases where there are differences of opinion among taxonomists, the writer's data usually support one or other of them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号