首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   51篇
  2023年   2篇
  2022年   9篇
  2021年   9篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   11篇
  2015年   24篇
  2014年   18篇
  2013年   13篇
  2012年   28篇
  2011年   16篇
  2010年   19篇
  2009年   19篇
  2008年   28篇
  2007年   25篇
  2006年   28篇
  2005年   23篇
  2004年   21篇
  2003年   12篇
  2002年   23篇
  2001年   19篇
  2000年   10篇
  1999年   13篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1994年   7篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有437条查询结果,搜索用时 281 毫秒
331.
332.
The cytochrome d terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 within the cytoplasmic membrane and the reduction of molecular oxygen to water along with the concomitant generation of a proton-motive force across the membrane. Previous studies have established that the oxidase is composed of one copy of each of two subunits (I and II), and contains four heme prosthetic groups. The hydropathy profiles of the amino acid sequences suggest that each subunit has multiple transmembrane-spanning helical segments. The goal of the current work is to obtain experimental information about which portions of the two polypeptide chains are facing the cytoplasm. This is part of an effort to determine the topological folding of the two subunits across the membrane. A number of random gene fusions were generated in vitro which encode hybrid proteins in which the amino-terminal portion is provided by one of the two subunits of the oxidase, and the carboxyl-terminal portion is beta-galactosidase. Studies from other systems have indicated that the only hybrid proteins which will manifest high beta-galactosidase specific activity and be membrane-bound will be those where the fusion junction is in a region of the cytochrome polypeptides facing the cytoplasm. Fusions were obtained in eight positions within subunit I and 11 positions within subunit II. These identified four cytoplasmic-facing regions within subunit II, consistent with its hydropathy profile showing eight transmembrane helices. The data with subunit I are less conclusive.  相似文献   
333.
C D Georgiou  D A Webster 《Biochemistry》1987,26(20):6521-6526
Cytochrome o(561,564) terminal oxidase was solubilized from the membrane fraction of the bacterium Vitreoscilla sp., strain C1, and purified by differential pH dialysis, gel filtration chromatography, and ion-exchange chromatography. Subunit molecular weights, determined on sodium dodecyl sulfate-polyacrylamide gels by the Ferguson plot method, were 49,500 and 23,500. There were two protohemes IX, two coppers, and 45 mol of phosphorus per mole of protomer (73,000). The molecular weight of the cytochrome o complex estimated by chromatography on Sephacryl-400 in deoxycholate was 265,000, which is consistent with the enzyme complex under these conditions being a dimer (146,000) with the remaining molecular weight contribution arising from bound phospholipid, deoxycholate, and possibly other, smaller subunits. Difference spectra of the dithionite-reduced enzyme have split alpha absorption maxima at 561 and 564 nm at room temperature and 558 and 561 nm at 77 K. The CO difference spectrum at room temperature has absorption maxima at 570, 534, and 416 nm. Dissociation constants for CO and cyanide binding to the reduced and oxidized forms of the oxidase are 5.2 microM and 3.5 mM, respectively. The hemes in the cytochrome are one electron accepting centers, both with midpoint potentials around +165 mV at pH 7.0. The enzyme is highly autoxidizable, and its menadiol oxidizing activity is stimulated by phospholipids.  相似文献   
334.

Background

Cigarette smoking induces peripheral inflammatory responses in all smokers and is the major risk factor for neutrophilic lung disease such as chronic obstructive pulmonary disease. The aim of this study was to investigate the effect of cigarette smoke on neutrophil migration and on β2-integrin activation and function in neutrophilic transmigration through endothelium.

Methods and results

Utilizing freshly isolated human PMNs, the effect of cigarette smoke on migration and β2-integrin activation and function in neutrophilic transmigration was studied. In this report, we demonstrated that cigarette smoke extract (CSE) dose dependently induced migration of neutrophils in vitro. Moreover, CSE promoted neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that Mac-1 (CD11b/CD18) is responsible for the cigarette smoke-induced firm adhesion of neutrophils to fibrinogen. Furthermore, neutrophils transmigrated through endothelium by cigarette smoke due to the activation of β2-integrins, since pre-incubation of neutrophils with functional blocking antibodies against CD11b and CD18 attenuated this transmigration.

Conclusion

This is the first study to describe that cigarette smoke extract induces a direct migratory effect on neutrophils and that CSE is an activator of β2-integrins on the cell surface. Blocking this activation of β2-integrins might be an important target in cigarette smoke induced neutrophilic diseases.  相似文献   
335.
336.
337.
The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process.  相似文献   
338.
Cantor JR  Stone EM  Georgiou G 《Biochemistry》2011,50(14):3025-3033
The enzymatic deamidation of N-terminal L-Asn by N-terminal asparagine amidohydrolase (NTAN1) is a feature of the ubiquitin-dependent N-end rule pathway of protein degradation, which relates the in vivo half-life of a protein to the identity of its N-terminal residue. Herein, we report the bacterial expression, purification, and biochemical characterization of human NTAN1 (hNTAN1). We show here that hNTAN1 is highly selective for the hydrolysis of N-terminal peptidyl L-Asn but fails to deamidate free L-Asn or L-Gln, N-terminal peptidyl L-Gln, or acetylated N-terminal peptidyl L-Asn. Similar to other N-terminal deamidases, hNTAN1 is shown to possess a critical Cys residue that is absolutely required for catalysis, corroborated in part by abolishment of activity through the Cys75Ala point mutation. We also present evidence that the exposure of a conserved L-Pro at the N-terminus of hNTAN1 following removal of the initiating L-Met is important for the function of the enzyme. The results presented here should assist in the elucidation of molecular mechanisms underlying the neurological defects of NTAN1-deficient mice observed in other studies, and in the discovery of potential physiological substrates targeted by the enzyme in the modulation of protein turnover via the N-end rule pathway.  相似文献   
339.
During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledge about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for α-smooth muscle actin, calponin and SM22α) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence (α-smooth muscle actin and calponin) or weak (SM22α) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7.5-E8.5, becomes drastically reduced by E10.5 and is undetectable by E12.5. In conclusion, this study reveals novel aspects of the decidual SA muscular coat phenotype prior to and during early SAR that may have important implications for understanding the mechanisms of SAR.  相似文献   
340.

Background

General anesthesia is a reversible state of unconsciousness and depression of reflexes to afferent stimuli induced by administration of a “cocktail” of chemical agents. The multi-component nature of general anesthesia complicates the identification of the precise mechanisms by which anesthetics disrupt consciousness. Devices that monitor the depth of anesthesia are an important aide for the anesthetist. This paper investigates the use of effective connectivity measures from human electrical brain activity as a means of discriminating between ‘awake’ and ‘anesthetized’ state during induction and recovery of consciousness under general anesthesia.

Methodology/Principal Findings

Granger Causality (GC), a linear measure of effective connectivity, is utilized in automated classification of ‘awake’ versus ‘anesthetized’ state using Linear Discriminant Analysis and Support Vector Machines (with linear and non-linear kernel). Based on our investigations, the most characteristic change of GC observed between the two states is the sharp increase of GC from frontal to posterior regions when the subject was anesthetized, and reversal at recovery of consciousness. Features derived from the GC estimates resulted in classification of ‘awake’ and ‘anesthetized’ states in 21 patients with maximum average accuracies of 0.98 and 0.95, during loss and recovery of consciousness respectively. The differences in linear and non-linear classification are not statistically significant, implying that GC features are linearly separable, eliminating the need for a complex and computationally expensive non-linear classifier. In addition, the observed GC patterns are particularly interesting in terms of a physiological interpretation of the disruption of consciousness by anesthetics. Bidirectional interaction or strong unidirectional interaction in the presence of a common input as captured by GC are most likely related to mechanisms of information flow in cortical circuits.

Conclusions/Significance

GC-based features could be utilized effectively in a device for monitoring depth of anesthesia during surgery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号