首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   32篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   6篇
  2015年   12篇
  2014年   13篇
  2013年   15篇
  2012年   18篇
  2011年   17篇
  2010年   12篇
  2009年   10篇
  2008年   17篇
  2007年   11篇
  2006年   17篇
  2005年   13篇
  2004年   21篇
  2003年   10篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   2篇
  1977年   1篇
  1976年   4篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   4篇
  1966年   4篇
  1964年   1篇
  1962年   2篇
  1961年   1篇
  1960年   2篇
  1959年   2篇
  1940年   1篇
  1939年   1篇
排序方式: 共有272条查询结果,搜索用时 890 毫秒
131.
Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype-phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes.  相似文献   
132.
We aimed to assess whether pri-miRNA SNPs (miSNPs) could influence monocyte gene expression, either through marginal association or by interacting with polymorphisms located in 3''UTR regions (3utrSNPs). We then conducted a genome-wide search for marginal miSNPs effects and pairwise miSNPs × 3utrSNPs interactions in a sample of 1,467 individuals for which genome-wide monocyte expression and genotype data were available. Statistical associations that survived multiple testing correction were tested for replication in an independent sample of 758 individuals with both monocyte gene expression and genotype data. In both studies, the hsa-mir-1279 rs1463335 was found to modulate in cis the expression of LYZ and in trans the expression of CNTN6, CTRC, COPZ2, KRT9, LRRFIP1, NOD1, PCDHA6, ST5 and TRAF3IP2 genes, supporting the role of hsa-mir-1279 as a regulator of several genes in monocytes. In addition, we identified two robust miSNPs × 3utrSNPs interactions, one involving HLA-DPB1 rs1042448 and hsa-mir-219-1 rs107822, the second the H1F0 rs1894644 and hsa-mir-659 rs5750504, modulating the expression of the associated genes.As some of the aforementioned genes have previously been reported to reside at disease-associated loci, our findings provide novel arguments supporting the hypothesis that the genetic variability of miRNAs could also contribute to the susceptibility to human diseases.  相似文献   
133.
p120 catenin is a cadherin-associated protein that regulates Rho GTPases and promotes the invasiveness of E-cadherin-deficient cancer cells. Multiple p120 isoforms are expressed in cells via alternative splicing, and all of them are essential for HGF signaling to Rac1. However, only full-length p120 (isoform 1) promotes invasiveness. This selective ability of p120 isoform 1 is mediated by reduced RhoA activity, both under basal conditions and following HGF treatment. All p120 isoforms can bind RhoA in vitro, via a central RhoA binding site. However, only the cooperative binding of RhoA to the central p120 domain and to the alternatively spliced p120 N terminus stabilizes RhoA binding and inhibits RhoA activity. Consistent with this, increased expression of p120 isoform 1, when compared with other p120 isoforms, is predictive of renal tumor micrometastasis and systemic progression, following nephrectomy. Furthermore, ectopic expression of the RhoA-binding, N-terminal domain of p120 is sufficient to block the ability of p120 isoform 1 to inhibit RhoA and to promote invasiveness. The data indicate that the increased expression of p120 isoform 1 during tumor progression contributes to the invasive phenotype of cadherin-deficient carcinomas and that the N-terminal domain of p120 is a valid therapeutic target.  相似文献   
134.
p120 catenin regulates the activity of the Rho family guanosine triphosphatases (including RhoA and Rac1) in an adhesion-dependent manner. Through this action, p120 promotes a sessile cellular phenotype when associated with epithelial cadherin (E-cadherin) or a motile phenotype when associated with mesenchymal cadherins. In this study, we show that p120 also exerts significant and diametrically opposing effects on tumor cell growth depending on E-cadherin expression. Endogenous p120 acts to stabilize E-cadherin complexes and to actively promote the tumor-suppressive function of E-cadherin, potently inhibiting Ras activation. Upon E-cadherin loss during tumor progression, the negative regulation of Ras is relieved; under these conditions, endogenous p120 promotes transformed cell growth both in vitro and in vivo by activating a Rac1–mitogen-activated protein kinase signaling pathway normally activated by the adhesion of cells to the extracellular matrix. These data indicate that both E-cadherin and p120 are important regulators of tumor cell growth and imply roles for both proteins in chemoresistance and targeted therapeutics.  相似文献   
135.
While protease-activated receptors (PARs) are known to mediate signaling events in CNS, contributing both to normal function and pathogenesis, the endogenous activators of CNS PARs are poorly characterized. In this study, we test the hypothesis that kallikreins (KLKs) represent an important pool of endogenous activators of CNS PARs. Specifically, KLK1 and KLK6 were examined for their ability to evoke intracellular Ca(2+) flux in a PAR-dependent fashion in NSC34 neurons and Neu7 astrocytes. Both KLKs were also examined for their ability to activate mitogen-activated protein kinases (extracellular signal-regulated kinases, C-Jun N-terminal kinases, and p38) and protein kinase B (AKT) intracellular signaling cascades. Cumulatively, these studies show that KLK6, but not KLK1, signals through PARs. KLK6 evoked intracellular Ca(2+) flux was mediated by PAR1 in neurons and both PAR1 and PAR2 in astrocytes. Importantly, both KLK1 and KLK6 altered the activation state of mitogen-activated protein kinases and AKT, suggestive of important roles for each in CNS neuron and glial differentiation, and survival. The cellular specificity of CNS-KLK activity was underscored by observations that both proteases promoted AKT activation in astrocytes, but inhibited such signaling in neurons. PAR1 and bradykinin receptor inhibitors were used to demonstrate that KLK1-mediated activation of extracellular signal-regulated kinases in neurons occurred in a non-PAR, bradykinin 2 (B2) receptor-dependent fashion, while similar signaling by KLK6 was mediated by the combined activation of PAR1 and B2. Cumulatively results indicate KLK6, but not KLK1 is an activator of CNS PARs, and that both KLKs are poised to signal in a B2 receptor-dependent fashion to regulate multiple signal transduction pathways relevant to CNS physiologic function and dysfunction.  相似文献   
136.
137.
138.
139.
Water-soluble gadofullerides exhibited high efficiency as magnetic resonance imaging (MRI) contrast agents. In this paper, we report the conjugation of the newly synthesized gadofulleride, Gd@C82O6(OH) 16(-)(NHCH2CH2COOH)8, with the antibody of green fluorescence protein (anti-GFP), as a model for "tumor targeted" imaging agents based on endohedral metallofullerenes. In this model system, the activity of the anti-GFP conjugate can be conveniently detected by green fluorescence protein (GFP), leading to in vitro experiments more direct and facile than those of tumor antibodies. Objective-type total internal reflection fluorescence microscopy revealed that each gadofulleride aggregate conjugated on average five anti-GFPs, and the activity of anti-GFPs was preserved after conjugation. In addition, the gadofulleride/antibody conjugate exhibited higher water proton relaxivity (12.0 mM (-1) s (-1)) than the parent gadofulleride aggregate (8.1 mM (-1) s (-1)) in phosphate buffered saline at 0.35 T, as also confirmed by T1-weighted images of phantoms. These observations clearly indicate that the synthesized gadofulleride/antibody conjugate not only has targeting potential, but also exhibits higher efficiency as an MRI contrast agent.  相似文献   
140.
The bacterial primosome comprises the replicative homo-hexameric ring helicase DnaB and the primase DnaG. It is an integral component of the replisome as it unwinds the parental DNA duplex to allow progression of the replication fork, synthesizes the initiation primers at the replication origin, oriC , and the primers required for Okazaki fragment synthesis during lagging strand replication. The interaction between the two component proteins is mediated by a distinct C-terminal domain (p16) of the primase. Both proteins mutually regulate each other's activities and a putative network of conserved residues has been proposed to mediate these effects. We have targeted 10 residues from this network. To investigate the functional contributions of these residues to the primase, ATPase and helicase activities of the primosome, we have used site-directed mutagenesis and in vitro functional assays. Five of these residues (E464, H494, R495, Y548 and R555) exhibited some functional significance while the remaining five (E483, R484, E506, D512 and E530) exhibited no effects. E464 participates in functional modulation of the primase activity, whereas H494, R495 and R555 participate in allosteric functional modulation of the ATPase and/or helicase activities. Y548 contributes directly to the structural interaction with DnaB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号