首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   32篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   6篇
  2015年   12篇
  2014年   13篇
  2013年   15篇
  2012年   18篇
  2011年   17篇
  2010年   12篇
  2009年   10篇
  2008年   17篇
  2007年   11篇
  2006年   17篇
  2005年   13篇
  2004年   21篇
  2003年   10篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   2篇
  1977年   1篇
  1976年   4篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   4篇
  1966年   4篇
  1964年   1篇
  1962年   2篇
  1961年   1篇
  1960年   2篇
  1959年   2篇
  1940年   1篇
  1939年   1篇
排序方式: 共有272条查询结果,搜索用时 147 毫秒
121.
Syx is a Rho-specific guanine nucleotide exchange factor (GEF) that localizes at cell-cell junctions and promotes junction stability by activating RhoA and the downstream effector Diaphanous homolog 1 (Dia1). Previously, we identified several molecules, including 14-3-3 proteins, as Syx-interacting partners. In the present study, we show that 14-3-3 isoforms interact with Syx at both its N- and C-terminal regions in a phosphorylation-dependent manner. We identify the protein kinase D-mediated phosphorylation of serine 92 on Syx, and additional phosphorylation at serine 938, as critical sites for 14-3-3 association. Our data indicate that the binding of 14-3-3 proteins inhibits the GEF activity of Syx. Furthermore, we show that phosphorylation-deficient, 14-3-3-uncoupled Syx exhibits increased junctional targeting and increased GEF activity, resulting in the strengthening of the circumferential junctional actin ring in Madin-Darby canine kidney cells. These findings reveal a novel means of regulating junctional Syx localization and function by phosphorylation-induced 14-3-3 binding and further support the importance of Syx function in maintaining stable cell-cell contacts.  相似文献   
122.
123.
The role of RhoA in promoting directed cell migration has been complicated by studies showing that it is activated both in the front and the rear of migrating cells. We report here that the RhoA-specific guanine nucleotide exchange factor Syx is required for the polarity of actively migrating brain and breast tumor cells. This function of Syx is mediated by the selective activation of the RhoA downstream effector Dia1, the subsequent reorganization of microtubules, and the downregulation of focal adhesions and actin stress fibers. The data argue that directed cell migration requires the precise spatiotemporal regulation of Dia1 and ROCK activities in the cell. The recruitment of Syx to the cell membrane and the subsequent selective activation of Dia1 signaling, coupled with the suppression of ROCK and activation of cofilin-mediated actin reorganization, plays a key role in establishing cell polarity during directed cell migration.  相似文献   
124.
Osteoarthritis (OA) is a prevalent, heritable degenerative joint disease with a substantial public health impact. We used a 1000-Genomes-Project-based imputation in a genome-wide association scan for osteoarthritis (3177 OA cases and 4894 controls) to detect a previously unidentified risk locus. We discovered a small disease-associated set of variants on chromosome 13. Through large-scale replication, we establish a robust association with SNPs in MCF2L (rs11842874, combined odds ratio [95% confidence interval] 1.17 [1.11–1.23], p = 2.1 × 10−8) across a total of 19,041 OA cases and 24,504 controls of European descent. This risk locus represents the third established signal for OA overall. MCF2L regulates a nerve growth factor (NGF), and treatment with a humanized monoclonal antibody against NGF is associated with reduction in pain and improvement in function for knee OA patients.  相似文献   
125.
The aim of this study was to investigate the effect of common vitamin D receptor (VDR) gene polymorphisms on the bone mineral density (BMD) of Greek postmenopausal women. Healthy postmenopausal women (n=578) were recruited for the study. The BMD of the lumbar spine and hip was measured using dual-energy X-ray absorptiometry with the Lunar DPX-MD device. Assessment of dietary calcium intake was performed with multiple 24-h recalls. Genotyping was performed for the BsmI, TaqI and Cdx-2 polymorphisms of the VDR gene. The selected polymorphisms were not associated with BMD, osteoporosis or osteoporotic fractures. Stratification by calcium intake revealed that in the low calcium intake group (<680 mg/day), all polymorphisms were associated with the BMD of the lumbar spine (P<.05). After adjustment for potential covariates, BsmI and TaqI polymorphisms were associated with the presence of osteoporosis (P<.05), while the presence of the minor A allele of Cdx-2 polymorphism was associated with a lower spine BMD (P=.025). In the higher calcium intake group (>680 mg/day), no significant differences were observed within the genotypes for all polymorphisms. The VDR gene is shown to affect BMD in women with low calcium intake, while its effect is masked in women with higher calcium intake. This result underlines the significance of adequate calcium intake in postmenopausal women, given that it exerts a positive effect on BMD even in the presence of negative genetic predisposition.  相似文献   
126.

Background

Periodontitis and Alzheimer disease (AD) are associated with systemic inflammation. This research studied serum IgG to periodontal microbiota as possible predictors of incident AD.

Methods

Using a case-cohort study design, 219 subjects (110 incident AD cases and 109 controls without incident cognitive impairment at last follow-up), matched on race-ethnicity, were drawn from the Washington Heights-Inwood Columbia Aging Project (WHICAP), a cohort of longitudinally followed northern Manhattan residents aged >65 years. Mean follow-up was five years (SD 2.6). In baseline sera, serum IgG levels were determined for bacteria known to be positively or negatively associated with periodontitis (Porphyromonas gingivalis, Tannerella forsythia, Actinobacillus actinomycetemcomitans Y4, Treponema denticola, Campylobacter rectus, Eubacterium nodatum, and Actinomyces naeslundii genospecies-2). In all analyses, we used antibody threshold levels shown to correlate with presence of moderate-severe periodontitis.

Results

Mean age was 72 years (SD 6.9) for controls, and 79 years (SD 4.6) for cases (p<0.001). Non-Hispanic Whites comprised 26%, non-Hispanic Blacks 27%, and Hispanics 48% of the sample. In a model adjusting for baseline age, sex, education, diabetes mellitus, hypertension, smoking, prior history of stroke, and apolipoprotein E genotype, high anti-A. naeslundii titer (>640 ng/ml, present in 10% of subjects) was associated with increased risk of AD (HR = 2.0, 95%CI: 1.1–3.8). This association was stronger after adjusting for other significant titers (HR = 3.1, 95%CI: 1.5–6.4). In this model, high anti-E. nodatum IgG (>1755 ng/ml; 19% of subjects) was associated with lower risk of AD (HR = 0.5, 95%CI: 0.2–0.9).

Conclusions

Serum IgG levels to common periodontal microbiota are associated with risk for developing incident AD.  相似文献   
127.
128.
Vascular endothelial growth factor (VEGF) and Ang1 (Angiopoietin-1) have opposing effects on vascular permeability, but the molecular basis of these effects is not fully known. We report in this paper that VEGF and Ang1 regulate endothelial cell (EC) junctions by determining the localization of the RhoA-specific guanine nucleotide exchange factor Syx. Syx was recruited to junctions by members of the Crumbs polarity complex and promoted junction integrity by activating Diaphanous. VEGF caused translocation of Syx from cell junctions, promoting junction disassembly, whereas Ang1 maintained Syx at the junctions, inducing junction stabilization. The VEGF-induced translocation of Syx from EC junctions was caused by PKD1 (protein kinase D1)-mediated phosphorylation of Syx at Ser806, which reduced Syx association to its junctional anchors. In support of the pivotal role of Syx in regulating EC junctions, syx−/− mice had defective junctions, resulting in vascular leakiness, edema, and impaired heart function.  相似文献   
129.
130.
Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (p = 2.62×10−9–1.01×10−12). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson''s disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (OR = 1.28, 95% confidence interval: 1.06–1.55, p = 8.9×10−3). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR) = 5.78, p = 1.4×10−88]. Our results highlight unexpected associations between early-onset AGA, Parkinson''s disease, and decreased fertility, providing important insights into the pathophysiology of these conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号