首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1372篇
  免费   60篇
  国内免费   2篇
  2023年   12篇
  2022年   19篇
  2021年   49篇
  2020年   24篇
  2019年   35篇
  2018年   36篇
  2017年   28篇
  2016年   48篇
  2015年   66篇
  2014年   84篇
  2013年   120篇
  2012年   131篇
  2011年   118篇
  2010年   64篇
  2009年   63篇
  2008年   84篇
  2007年   79篇
  2006年   59篇
  2005年   61篇
  2004年   35篇
  2003年   27篇
  2002年   32篇
  2001年   21篇
  2000年   12篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   8篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1965年   2篇
排序方式: 共有1434条查询结果,搜索用时 31 毫秒
161.
Impairment of Akt phosphorylation, a critical survival signal, has been implicated in the degeneration of dopaminergic neurons in Parkinson's disease. However, the mechanism underlying pAkt loss is unclear. In the current study, we demonstrate pAkt loss in ventral midbrain of mice treated with dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), when compared to ventral midbrain of control mice treated with vehicle alone. Thiol residues of the critical cysteines in Akt are oxidized to a greater degree in mice treated with MPTP, which is reflected as a 40% loss of reduced Akt. Association of oxidatively modified Akt with the phosphatase PP2A, which can lead to enhanced dephosphorylation of pAkt, was significantly stronger after MPTP treatment. Maintaining the protein thiol homeostasis by thiol antioxidants prevented loss of reduced Akt, decreased association with PP2A, and maintained pAkt levels. Overexpression of glutaredoxin, a protein disulfide oxidoreductase, in human primary neurons helped sustain reduced state of Akt and abolished MPP(+)-mediated pAkt loss. We demonstrate for the first time the selective loss of Akt activity, in vivo, due to oxidative modification of Akt and provide mechanistic insight into oxidative stress-induced down-regulation of cell survival pathway in mouse midbrain following exposure to MPTP.  相似文献   
162.
Analysis of chromatin-immunoprecipitation followed by sequencing (ChIP-seq) usually disregards sequence reads that do not map within binding positions (peaks). Using an unbiased approach, we analysed all reads, both that mapped and ones that were not included as part of peaks. ChIP-seq experiments were performed in human lung adenocarcinoma and fibrosarcoma cells for the metastasis suppressor non-metastatic 2 (NME2). Surprisingly, we identified sequence reads that uniquely represented human telomere ends in both cases. In vivo presence of NME2 at telomere ends was validated using independent methods and as further evidence we found intranuclear association of NME2 and the telomere repeat binding factor 2. Most remarkably, results demonstrate that NME2 associates with telomerase and reduces telomerase activity in vitro and in vivo, and sustained NME2 expression resulted in reduced telomere length in aggressive human cancer cells. Anti-metastatic function of NME2 has been demonstrated in human cancers, however, mechanisms are poorly understood. Together, findings reported here suggest a novel role for NME2 as a telomere binding protein that can alter telomerase function and telomere length. This presents an opportunity to investigate telomere-related interactions in metastasis suppression.  相似文献   
163.
164.
Mutational bias toward expansion or contraction of simple sequence repeats (SSRs) is referred to as directionality of SSR evolution. In this communication, we report the mutational bias exhibited by mononucleotide SSRs occurring in the non-coding regions of several prokaryotic genomes. Our investigations revealed that the strains or species lacking mismatch repair (MMR) system generally show higher number of polymorphic SSRs than those species/strains having MMR system. An exception to this observation was seen in the mycobacterial genomes that are MMR deficient where only a few SSR tracts were seen with mutations. This low incidence of SSR mutations even in the MMR-deficient background could be attributed to the high fidelity of the DNA polymerases as a consequence of high generation time of the mycobacteria. MMR system-deficient species generally did not show any bias toward mononucleotide SSR expansions or contractions indicating a neutral evolution of SSRs in these species. The MMR-proficient species in which the observed mutations correspond to secondary mutations showed bias toward contraction of polymononucleotide tracts, perhaps, indicating low efficiency of MMR system to repair SSR-induced slippage errors on template strands. This bias toward deletion in the mononucleotide SSR tracts might be a probable reason behind scarcity for long poly A|T and G|C tracts in prokaryotic systems which are mostly MMR proficient. In conclusion, our study clearly demonstrates mutational dynamics of SSRs in relation to the presence/absence of MMR system in the prokaryotic system.  相似文献   
165.
166.
The members of the genus Deinococcus are extensively studied because of their exemplary radiation resistance. Both ionizing and non-ionizing rays are routinely employed to select upon the radiation resistant deinococcal population and isolate them from the majority of radiation sensitive population. There are no studies on the development of molecular tools for the rapid detection and identification of deinococci from a mixed population without causing the bias of radiation enrichment. Here we present a Deinococcus specific two-step hemi-nested PCR for the rapid detection of deinococci from environmental samples. The method is sensitive and specific to detect deinococci without radiation exposure of the sample. The new protocol was successfully employed to detect deinococci from several soil samples from different geographical regions of India. The PCR method could be adapted to a three-step protocol to study the diversity of the environmental deinococcal population by denaturing gradient gel electrophoresis (DGGE). Sequence analysis of the DGGE bands revealed that the samples harbor diverse populations of deinococci, many of which were not recovered by culturing and may represent novel clades. We demonstrate that the genus specific primers are also suitable for the rapid identification of the bacterial isolates that are obtained from a typical radiation enrichment isolation technique. Therefore the primers and the protocols described in this study can be used to study deinococcal diversity from environmental samples and can be employed for the rapid detection of deinococci in samples or identifying pure culture isolates as Deinococcus species.  相似文献   
167.
We have previously shown that pancreatic sensory neurons in rats with chronic pancreatitis (CP) display increased excitability associated with a decrease in transient inactivating potassium currents (I(A)), thus accounting in part for the hyperalgesia associated with this condition. Because of its well known role in somatic hyperalgesia, we hypothesized a role for the nerve growth factor (NGF) in driving these changes. CP was induced by intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. After 3 wk, anti-NGF antibody or control serum was injected intra-peritoneally daily for 1 wk. This protocol was repeated in another set of experiments in control rats (receiving intraductal PBS instead of TNBS). Pancreatic nociceptors labeled with the dye Dil were identified, and patch-clamp recordings were made from acutely dissociated DRG neurons. Sensory neurons from anti-NGF-treated rats displayed a lower resting membrane potential, increased rheobase, decreased burst discharges in response to stimulatory current, and decreased input resistance compared with those treated with control serum. Under voltage-clamp condition, neuronal I(A) density was increased in anti-NGF-treated rats compared with rats treated with control serum. However, anti-NGF treatment had no effect on electrophysiological parameters in neurons from control rats. The expression of Kv-associated channel or ancillary genes Kv1.4, 4.1, 4.2, 4.3, and DPP6, DPP10, and KCHIPs 1-4 in pancreas-specific nociceptors was examined by laser-capture microdissection and real-time PCR quantification of mRNA levels. No significant differences were seen among those. These findings emphasize a key role for NGF in maintaining neuronal excitability in CP specifically via downregulation of I(A) by as yet unknown mechanisms.  相似文献   
168.
Matrix metalloproteinases (MMPs) are family of zinc dependent endopeptidases, which cleave extracellular matrix proteins, and play an important role in tissue remodelling in physiological and pathological processes. There is enhanced expression of MMPs, in particular MMP-9, during numerous pathological conditions, including epilepsy and ischemic stroke. Therefore, inhibition of MMP-9 is considered as a potential therapeutic target. Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1) is a 28 kDa endogenous inhibitor of MMP-9. In this study we examined recombinant mouse TIMP-1 for its in-vitro neuroprotective effects, against Kainic Acid (KA) induced excitotoxicity in organotypic hippocampal slice culture (OHC) model. We also studied, sustained release effects of TIMP-1 in OHC by using poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs). TIMP-1 and TIMP-1 PLGA NPs were added to the slice cultures at different time points, i.e., 30 min before treatment with KA and 6 h after KA treatment. Propidium iodide staining was used to reveal cell toxicity in the cultures. In addition, neurotoxicity was assessed using standard lactate dehydrogenase (LDH) release assay. Gelatinolytic activity in conditioned cultured medium of OHC was accessed by a fluorescent substrate assay. Briefly, our result show that TIMP-1 provided significant level of neuroprotection, especially when given before 30 min of KA and released from the NPs. Since gelatinolytic activity assay showed a decrease in MMP-9 activity, it can be suggested that this neuroprotection might be mediated by the gelatinase inhibition.  相似文献   
169.
Increasing evidence of the fungal diversity in deep-sea sediments has come from amplification of environmental DNA with fungal specific or eukaryote primer sets. In order to assess the fungal diversity in deep-sea sediments of the Central Indian Basin (CIB) at ~5,000 m depth, we amplified sediment DNA with four different primer sets. These were fungal-specific primer pair ITS1F/ITS4 (internal transcribed spacers), universal 18S rDNA primers NS1/NS2, Euk18S-42F/Euk18S-1492R and Euk18S-555F/Euk18S-1269R. One environmental library was constructed with each of the primer pairs, and 48 clones were sequenced per library. These sequences resulted in 8 fungal Operational Taxonomic Units (OTUs) with ITS and 19 OTUs with 18S rDNA primer sets respectively by taking into account the 2% sequence divergence cut-off for species delineation. These OTUs belonged to 20 distinct fungal genera of the phyla Ascomycota and Basidiomycota. Seven sequences were found to be divergent by 79–97% from the known sequences of the existing database and may be novel. A majority of the sequences clustered with known sequences of the existing taxa. The phylogenetic affiliation of a few fungal sequences with known environmental sequences from marine and hypersaline habitat suggests their autochthonous nature or adaptation to marine habitat. The amplification of sequences belonging to Exobasidiomycetes and Cystobasidiomycetes from deep-sea is being reported for the first time in this study. Amplification of fungal sequences with eukaryotic as well as fungal specific primers indicates that among eukaryotes, fungi appear to be a dominant group in the sampling site of the CIB.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号