首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   41篇
  国内免费   2篇
  882篇
  2024年   1篇
  2023年   12篇
  2022年   13篇
  2021年   34篇
  2020年   19篇
  2019年   29篇
  2018年   19篇
  2017年   18篇
  2016年   29篇
  2015年   47篇
  2014年   53篇
  2013年   82篇
  2012年   94篇
  2011年   81篇
  2010年   45篇
  2009年   45篇
  2008年   58篇
  2007年   51篇
  2006年   39篇
  2005年   35篇
  2004年   18篇
  2003年   10篇
  2002年   19篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有882条查询结果,搜索用时 7 毫秒
61.
We report a rapid reduction in blink reflexes during in vivo ocular Pseudomonas aeruginosa infection, which is commonly attributed and indicative of functional neuronal damage. Sensory neurons derived in vitro from trigeminal ganglia (TG) were able to directly respond to P. aeruginosa but reacted significantly less to strains of P. aeruginosa that lacked virulence factors such as pili, flagella, or a type III secretion system. These observations led us to explore the impact of neurons on the host’s susceptibility to P. aeruginosa keratitis. Mice were treated with Resiniferatoxin (RTX), a potent activator of Transient Receptor Potential Vanilloid 1 (TRPV1) channels, which significantly ablated corneal sensory neurons, exhibited delayed disease progression that was exemplified with decreased bacterial corneal burdens and altered neutrophil trafficking. Sensitization to disease was due to the increased frequencies of CGRP-induced ICAM-1+ neutrophils in the infected corneas and reduced neutrophil bactericidal activities. These data showed that sensory neurons regulate corneal neutrophil responses in a tissue-specific matter affecting disease progression during P. aeruginosa keratitis. Hence, therapeutic modalities that control nociception could beneficially impact anti-infective therapy.  相似文献   
62.
The North-East region of India is one of the twelve mega biodiversity region, containing many rare and endangered species. A curated database of medicinal and aromatic plants from the regions called NeMedPlant is developed. The database contains traditional, scientific and medicinal information about plants and their active constituents, obtained from scholarly literature and local sources. The database is cross-linked with major biochemical databases and analytical tools. The integrated database provides resource for investigations into hitherto unexplored medicinal plants and serves to speed up the discovery of natural productsbased drugs. AVAILABILITY: The database is available for free at http://bif.uohyd.ac.in/nemedplant/orhttp://202.41.85.11/nemedplant/  相似文献   
63.
Kumar A  Tyagi NK  Goyal P  Pandey D  Siess W  Kinne RK 《Biochemistry》2007,46(10):2758-2766
Although there is no evidence of significant Na-independent glucose flux in tissues naturally expressing SGLT1, previous kinetic and biophysical studies suggest that sodium/d-glucose cotransporter 1 (hSGLT1) can facilitate sodium-independent d-glucose transport and may contain more than one sugar binding site. In this work, we analyze the kinetic properties and conformational states of isolated hSGLT1 reconstituted in liposomes by transport and fluorescence studies in the absence of sodium. In the transport studies with hSGLT1, significant sodium-independent phlorizin inhibitable alpha-methyl d-glucopyranoside (alpha-MDG) uptake was observed which amounted to approximately 20% of the uptake observed in the presence of a sodium gradient. The apparent affinity constant for alpha-MDG was thereby 3.4 +/- 0.5 mM, a value approximately 10-fold higher than that in the presence of sodium. In the absence of sodium, various sugars significantly decreased the intrinsic Trp fluorescence of hSGLT1 in proteoliposomes exhibiting the following sequence of affinities: alpha-MDG > d-glucose approximately d-galactose > 6-deoxy-d-glucose > 2-deoxy-d-glucose > d-allose. Furthermore, significant protection effects of d-glucose or phlorizin against potassium iodide, acrylamide, or trichloroethanol quenching were observed. To locate the Trps involved in this reaction, we generated mutants in which all Trps were sequentially substituted with Phe. None of the replacements significantly affected sodium-dependent uptake. Uptake in the absence of sodium and typical fluorescence changes depended, however, on the presence of Trp at position 561. This Trp residue is conserved in all known SGLT1 forms (except Vibrio parahaemolyticus SGLT) and all SGLT isoforms in humans (except hSGLT3). If all these data are taken into consideration, it seems that Trp-561 in hSGLT1 forms part of a low-affinity sodium-independent binding and/or translocation site for d-glucose. The rate of sodium-independent translocation via hSGLT1 seems, however, to be tightly regulated in the intact cell by yet unknown factors.  相似文献   
64.
The continuous advancements in cancer research have contributed to the overwhelming evidence of the presence of telomerase in primary and secondary tumours together with hsp90 and c-Myc. This review will discuss the important role of telomerase together with hsp90 and c-Myc within the initiation and progression of gliomas. Also it will review the differential expression of these genes in the different grades of gliomas and the possibility of new treatments targeting these specific genes.  相似文献   
65.
66.
Rapamycin has been shown to extend lifespan in numerous model organisms including mice, with the most dramatic longevity effects reported in females. However, little is known about the functional ramifications of this longevity‐enhancing paradigm in mammalian tissues. We treated 24‐month‐old female C57BL/6J mice with rapamycin for 3 months and determined health outcomes via a variety of noninvasive measures of cardiovascular, skeletal, and metabolic health for individual mice. We determined that while rapamycin has mild transient metabolic effects, there are significant benefits to late‐life cardiovascular function with a reversal or attenuation of age‐related changes in the heart. RNA‐seq analysis of cardiac tissue after treatment indicated inflammatory, metabolic, and antihypertrophic expression changes in cardiac tissue as potential mechanisms mediating the functional improvement. Rapamycin treatment also resulted in beneficial behavioral, skeletal, and motor changes in these mice compared with those fed a control diet. From these findings, we propose that late‐life rapamycin therapy not only extends the lifespan of mammals, but also confers functional benefits to a number of tissues and mechanistically implicates an improvement in contractile function and antihypertrophic signaling in the aged heart with a reduction in age‐related inflammation.  相似文献   
67.
Osteoarthritis (OA) is a chronic disease affecting the cartilage of over 15% of Canadians. Synovial fluid mesenchymal progenitor cells (sfMPCs) are present in joints and are thought to contribute to healing. OA sfMPCs have a greater proliferative ability but decreased chondrogenic potential. However, little is known about the factors influencing/regulating the differences between normal and OA sfMPCs. Recently, our lab has shown that sfMPC chondrogenic differentiation in vitro is favorably biased toward a similar osmotic environment as they experience in vivo. The current study now examines the expression and functionality of a variety of ion channels in sfMPCs derived from normal individuals and early OA patients. Results indicated that there is differential ion channel regulation at the functional level and expression level in early OA sfMPCs. All ion channels were upregulated in early OA compared to normal sfMPCs with the exception of KCNMA1 at the mRNA level. At the protein level, TRPV4 was over expressed in early OA sfMPCs, while KCNJ12 and KCNMA1 were unchanged between normal and early OA sfMPCs. At the functional level, the inward rectifying potassium channel was under expressed in early OA sfMPCs, however the membrane potential was unchanged between normal and early OA sfMPCs. In the synovial environment itself, a number of differences in ion concentration between normal and early OA synovial fluid were observed. These findings suggest that normal and OA progenitor cells demonstrate functional differences in how they interact with the synovial ion environment.  相似文献   
68.
69.
70.
LIM kinases (LIMKs) are mainly in the cytoplasm and regulate actin dynamics through cofilin phosphorylation. Recently, it has been reported that nuclear localization of LIMKs can mediate suppression of cyclin D1 expression. Using immunofluorescence monitoring of enhanced green fluorescent protein-tagged LIMK2 in combination with photobleaching techniques and leptomycin B treatment, we demonstrate that LIMK2 shuttles between the cytoplasm and the nucleus in endothelial cells. Sequence analysis predicted two PKC phosphorylation sites in LIMK2 but not in LIMK1. One site at Ser-283 is present between the PDZ and the kinase domain, and the other site at Thr-494 is within the kinase domain. Activation of PKC by phorbol ester treatment of endothelial cells stimulated LIMK2 phosphorylation at Ser-283 and inhibited nuclear import of LIMK2 and the PDZ kinase construct of LIMK2 (amino acids 142-638) but not of LIMK1. The PKC-delta isoform phosphorylated LIMK2 at Ser-283 in vitro. Mutational analysis indicated that LIMK2 phosphorylation at Ser-283 but not Thr-494 was functional. Serum stimulation of endothelial cells also inhibited nuclear import of PDZK-LIMK2 by protein kinase C-dependent phosphorylation of Ser-283. Our study shows that phorbol ester and serum stimulation of endothelial cells inhibit nuclear import of LIMK2 but not LIMK1. This effect was dependent on PKC-delta-mediated phosphorylation of Ser-283. Since phorbol ester enhanced cyclin D1 expression and subsequent G1-to-S-phase transition of endothelial cells, we suggest that the PKC-mediated exclusion of LIMK2 from the nucleus might be a mechanism to relieve suppression of cyclin D1 expression by LIMK2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号