Stylosanthes seabrana (Maass and ‘t Mannetje) (2n = 2x = 20), commonly known as Caatinga stylo, is an important tropical perennial forage legume. In nature, it largely co-exist
with S. scabra, an allotetraploid (2n = 4x = 40) species, sharing a very high similarity for morphological traits like growth habit, perenniality, fruit shape and presence
of small appendage at the base of the pod or loment. This makes the two species difficult to distinguish morphologically,
leading to chances of contamination in respective germplasm collections. In present study, 10 S. seabrana accessions were discovered from the existing global germplasm stock of S. scabra represented by 48 diverse collections, utilizing sequence-tagged-sites (STS) genome-specific markers. All the newly identified
S. seabrana accessions displayed STS phenotypes of typical diploid species. Earlier reports have conclusively indicated S. seabrana and S. viscosa as two diploid progenitors of allotetraploid S. scabra. With primer pairs SHST3F3/R3, all putative S. seabrana yielded single band of ~550 bp and S. viscosa of ~870 bp whereas both of these bands were observed in allotetraploid S. scabra. Since SHST3F3/R3 primer pairs are known to amplify single or no band with diploid and two bands with tetraploid species,
the amplification patterns corroborated that all newly identified S. seabrana lines were diploid in nature. Flow cytometric measurement of DNA content of the species, along with distinguishing morphological
traits such as flowering time and seedling vigour, which significantly differ from S. scabra, confirmed all identified lines as S. seabrana. These newly identified lines exhibited high level of similarity among themselves as revealed by RAPD and STS markers (>92%
and 80% respectively). Along with the enrichment in genetic resources of Stylosanthes, these newly identified and characterized accessions of S. seabrana can be better exploited in breeding programs targeted to quality. 相似文献
Burkholderia sp. strain SJ98 (DSM 23195) was previously isolated and characterized for degradation and co-metabolic transformation of a number nitroaromatic compounds. In the present study, we evaluated its metabolic activity on chlorinated nitroaromatic compounds (CNACs). Results obtained during this study revealed that strain SJ98 can degrade 2-chloro-4-nitrophenol (2C4NP) and utilize it as sole source of carbon, nitrogen, and energy under aerobic conditions. The cells of strain SJ98 removed 2C4NP from the growth medium with sequential release of nearly stoichiometric amounts of chloride and nitrite in culture supernatant. Under aerobic degradation conditions, 2C4NP was transformed into the first intermediate that was identified as p-nitrophenol by high-performance liquid chromatography, LCMS-TOF, and GC-MS analyses. This transformation clearly establishes that the degradation of 2C4NP by strain SJ98 is initiated by "reductive dehalogenation"; an initiation mechanism that has not been previously reported for microbial degradation of CNAC under aerobic conditions. 相似文献
Using agro-morphological characters and microsatellite markers, advance breeding lines of rice were discriminated for their ability to tolerate drought stress at reproductive stage. Experimental materials consisting of 17 advance breeding lines and a check were evaluated in randomized block design with three replications under irrigated condition and drought condition created under rainout shelter during three consecutive years. An analysis of variance revealed significant differences among the genotypes for all the ten agro-morphological characters evaluated under both the conditions across the years. Principal component analysis showed the relative importance of root length, number of tillers per plant, number of grains per panicle, harvest index and grain yield per plant among agro-morphological characters and stress tolerance level, stress susceptibility index, stress tolerance index and drought tolerance efficiency among drought tolerance indices as the important classification variables. Relative mean performance in respect of grain yield as well as drought tolerance indices reflected remarkably greater degree of drought tolerance in 11 advance breeding lines and the check, discriminating them from remaining entries under evaluation. Utilizing a panel of 32 microsatellite primers, selective amplification of targeted genomic regions revealed that the primers RM 72, RM 163, RM 212, RM 225, RM 231, RM 302, RM 327, RM 518, RM 521, RM 555, RM 1349, RM 3549 and RM 5443 were highly informative with greater gene diversity and discrimination ability. Hierarchical cluster analysis based on molecular profiles discriminated the entries into five genotypic groups and drought tolerant entries were accommodated into three distinct groups with remarkably greater efficiency (85.7%). Principal coordinate analysis based two dimensional plots of microsatellites dependent genetic profiles displayed a very close correspondence with the genotypic clustering pattern revealed from a perusal of dendrogram. Sequential exclusion of primers in cluster analysis led to identification of RM 212, RM 231, RM 324, RM 431, RM 521, RM 3549 and RM 6374 as the most useful primers for discrimination of drought tolerant and susceptible lines of rice. Molecular profiling based on these markers can be utilized as efficient tools for discrimination and identification of drought tolerant lines.
Cell-to-cell communication in bacteria is a process known as quorum sensing that relies on the production, detection, and response to the extracellular accumulation of signaling molecules called autoinducers. Often, bacteria use multiple autoinducers to obtain information about the vicinal cell density. However, how cells integrate and interpret the information contained within multiple autoinducers remains a mystery. Using single-cell fluorescence microscopy, we quantified the signaling responses to and analyzed the integration of multiple autoinducers by the model quorum-sensing bacterium Vibrio harveyi. Our results revealed that signals from two distinct autoinducers, AI-1 and AI-2, are combined strictly additively in a shared phosphorelay pathway, with each autoinducer contributing nearly equally to the total response. We found a coherent response across the population with little cell-to-cell variation, indicating that the entire population of cells can reliably distinguish several distinct conditions of external autoinducer concentration. We speculate that the use of multiple autoinducers allows a growing population of cells to synchronize gene expression during a series of distinct developmental stages. 相似文献
Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude garlic rhizosphere from the Indian Himalayas,
are reported here. The identity of the isolate was arrived on the basis of its biochemical features and sequencing of the
16S rRNA gene. The isolate grew and solubilized phosphate at temperatures ranging from 4 to 30°C. Besides solubilizing P it
produced indole acetic acid (IAA) and hydrogen cyanide (HCN). Seed bacterization with the isolate significantly increased
the percent germination, rate of germination, plant biomass and nutrient uptake of wheat seedlings. While Pseudomonas fragi is normally associated with the spoilage of dairy products stored at cold temperatures, this is an early report on the plant
growth promoting ability of the bacterium. 相似文献
The empty sella turcica is defined as the herniation of the subarachnoid space within the sella with displacement of the pituitary towards the posteroinferior wall. By autopsy studies, the incidence in the general population is around 20%. The association of prolactinoma and empty sella has been coincidental & infrequently reported. As such for microadenoma, visual field testing and screening for hypopituitarism is not needed, but if it is associated with empty sella, both visual field testing and screening for hypopituitarism is necessary. 相似文献
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex, plays an important role in crossing over between homologues. Hop1p contains a zinc finger motif, and substitution of a conserved Cys371 by Ser rendered the hop1 mutant allele defective in sporulation and meiosis. However, the molecular mechanism underlying the function of Hop1 zinc finger motif (ZnF) remains obscure. Here we show that wild-type Hop1 ZnF binds significantly better to the Holliday junction compared with other recombination intermediates. Consequently, the salt titration midpoint for dissociation of the Holliday junction-ZnF complex was higher than the complexes containing flush-ended linear or tailed duplex DNA. Although DNase I footprinting showed that Hop1 ZnF binds to each of the four arms of the junction, KMnO4 probing and 2-aminopurine fluorescence emission data disclosed that it distorts the DNA structure along a pair of symmetrical arms. Molecular modeling studies show that Hop1 ZnF forms a unique zinc-binding fold, reminiscent of the basic helix-loop-helix motif. In the presence of Zn2+, docking studies show that alpha helix 1, which is replete with basic amino acid residues, makes stabilizing contacts with the sugar-phosphate backbone. Structural comparison revealed a striking similarity between RecG wedge domain and Hop1 ZnF motif. We propose that Hop1 ZnF motif plays a key role in the physical monitoring of recombination intermediates and branch migration of the Holliday junction. 相似文献
The continuous advancements in cancer research have contributed to the overwhelming evidence of the presence of telomerase
in primary and secondary tumours together with hsp90 and c-Myc. This review will discuss the important role of telomerase together with hsp90 and c-Myc within the initiation and progression of gliomas. Also it will review the differential expression of these genes in the different
grades of gliomas and the possibility of new treatments targeting these specific genes. 相似文献
We report a rapid reduction in blink reflexes during in vivo ocular Pseudomonas aeruginosa infection, which is commonly attributed and indicative of functional neuronal damage. Sensory neurons derived in vitro from trigeminal ganglia (TG) were able to directly respond to P. aeruginosa but reacted significantly less to strains of P. aeruginosa that lacked virulence factors such as pili, flagella, or a type III secretion system. These observations led us to explore the impact of neurons on the host’s susceptibility to P. aeruginosa keratitis. Mice were treated with Resiniferatoxin (RTX), a potent activator of Transient Receptor Potential Vanilloid 1 (TRPV1) channels, which significantly ablated corneal sensory neurons, exhibited delayed disease progression that was exemplified with decreased bacterial corneal burdens and altered neutrophil trafficking. Sensitization to disease was due to the increased frequencies of CGRP-induced ICAM-1+ neutrophils in the infected corneas and reduced neutrophil bactericidal activities. These data showed that sensory neurons regulate corneal neutrophil responses in a tissue-specific matter affecting disease progression during P. aeruginosa keratitis. Hence, therapeutic modalities that control nociception could beneficially impact anti-infective therapy. 相似文献
The North-East region of India is one of the twelve mega biodiversity region, containing many rare and endangered species. A curated database of medicinal and aromatic plants from the regions called NeMedPlant is developed. The database contains traditional, scientific and medicinal information about plants and their active constituents, obtained from scholarly literature and local sources. The database is cross-linked with major biochemical databases and analytical tools. The integrated database provides resource for investigations into hitherto unexplored medicinal plants and serves to speed up the discovery of natural productsbased drugs. AVAILABILITY: The database is available for free at http://bif.uohyd.ac.in/nemedplant/orhttp://202.41.85.11/nemedplant/ 相似文献