首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   13篇
  170篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   10篇
  2013年   13篇
  2012年   12篇
  2011年   12篇
  2010年   5篇
  2009年   14篇
  2008年   10篇
  2007年   11篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   3篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1986年   1篇
  1983年   3篇
  1981年   1篇
  1979年   3篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
31.
The significance of Brevibacillus has been documented scientifically in the published literature and commercially in heterologous recombinant protein catalogs. Brevibacillus is one of the most widespread genera of Gram-positive bacteria, recorded from the diverse environmental habitats. The high growth rate, better transformation efficiency by electroporation, availability of shuttle vectors, production of negligible amount of extracellular protease, and the constitutive expression of heterologous proteins make some strains of this genus excellent laboratory models. Regarding biotechnological applications, this genus continues to be a source of various enzymes of great biotechnological interest due to their ability to biodegrade low density polyethylene, ability to act as a candidate bio-control agent, and more recently acknowledged as a tool for the overexpression. This article reviews the properties of Brevibacillus spp. as better biological tools with varied applications.  相似文献   
32.
Adhatoda vasica Nees, belonging to family Acanthaceae, is a well-known medicinal plant. It is endorsed for its pyrroloquinazoline alkaloids and its derivatives, such as vasicine and vasicinone. Germinating A. vasica seeds is a tedious task; on that account, vegetative propagation is the preferred method for its multiplication. For rapid and large-scale multiplication, germplasm conservation as well as secondary metabolites production, in vitro culture of A. vasica was preferred over conventional propagation by several researchers; however, some major applications of this tissue culture technique are still awaiting to undergo extensive research. The present review, for the first time, illustrates all the major achievements associated with in vitro regeneration of A. vasica, reported till date and highlights the future prospects.  相似文献   
33.
A comparison of changes in absorption properties and electron transport activities of chloroplasts ageing in vivo and in vitro is made. Chloroplasts from sunflower leaves senescing in vivo during 7 days in dark do not show a blue shift of the red absorption band; in contrast, the shift becomes apparent within 24 h of in vitro ageing of isolated organelles. Photosynthetic activity by chloroplasts is lost much faster during in vitro than in vivo ageing. During in vitro ageing, the rate of degradation of thylakoid membranes as characterised by the shift in the red absorption band and loss in Hill reaction is further accelerated in chloroplasts isolated from dark-induced senescing leaves, suggesting the influence of the in vivo status of the chloroplasts on their in vitro stability.Abbreviations DCPIP 2,6-dichlorophenol indophenol - PSI Photosystem I - Chl Chlorophyll  相似文献   
34.
35.
36.
37.
38.

Purpose  

Densification, a process used to manufacture pellets in order to increase biomass bulk density, plays a crucial role in the economics of biomass utilization. The Canadian Prairies produce large quantities of agricultural residues each year, in particular wheat straw. This study performs life cycle assessment of wheat straw pellets by evaluating environmental effects of the entire pellet production system comprising feedstock production (on-farm wheat straw production), harvesting, baling, transportation, and the industrial processing involving drying, grinding, pelletizing, and packing in the densification plant. The effects of each process on the environmental performance of wheat straw pellets were investigated.  相似文献   
39.
The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought.  相似文献   
40.
Editing of mitochondrial mRNAs in kinetoplastid protozoa occurs by a series of enzymatic steps that insert and delete uridylates (U's) as specified by guide RNAs (gRNAs). The characteristics of the 3" exonuclease activity that removes the U's following cleavage during deletion editing were determined by using an in vitro precleaved deletion assay that is based on ATPase subunit 6 pre-mRNA and gA6[14] gRNA. The exonuclease in partially purified editing complexes is specific for U's. The specificity occurs in the absence of gRNA, but its activity is enhanced by the presence of gRNA. The 3" pre-mRNA fragment enhances the specificity, but not the efficiency, of U removal. The activity is sensitive to the 5" phosphate of the 3" fragment, which is not required for U removal. The ability of the 3" U's to base pair with purines in the gRNA protects them from removal, suggesting that the U-specific 3" exonuclease (exoUase) is specific for U's which are not base paired. ExoUase is stereospecific and cannot remove (Rp)α-thio-U. The specificity of the exoUase activity thus contributes to the precision of RNA editing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号