首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   13篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   10篇
  2013年   13篇
  2012年   12篇
  2011年   12篇
  2010年   5篇
  2009年   14篇
  2008年   10篇
  2007年   11篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   3篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1986年   1篇
  1983年   3篇
  1981年   1篇
  1979年   3篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
11.
12.
Traditionally, Tinospora cordifolia (Willd.) Hook. F. & Thomson (Menispermaceae), Ocimum sanctum L. (Lamiaceae), Moringa oleifera Lam. (Moringaceae), and Phyllanthus niruri L. (Euphorbiaceae) are some of the commonly used medicinal plants in India for curing ailments ranging from common cold, skin diseases, and dental infections to major disorders like diabetes, hypertension, jaundice, rheumatism, etc. To understand and correlate their medicinal use, trace element studies on the aqueous extract of these medicinal plants have been carried out using particle-induced X-ray emission technique. A 2-MeV proton beam was used to identify and characterize major and minor elements namely Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, and Sr in them. Results have revealed that these elements are present in varying concentrations in the selected plants. Notable results include very high concentrations of Cl, K, and Ca in all the leaf samples, appreciable levels of Mn in all plants, high Zn content in T. cordifolia, and the aqueous extract of Moringa leaves compared to others and relative higher concentrations of Cr in all the plants.  相似文献   
13.
14.
15.
16.
Expansion of (CTG)*(CAG) repeats, the cause of 14 or more diseases, is presumed to arise through escaped repair of slipped DNAs. We report the fidelity of slipped-DNA repair using human cell extracts and DNAs with slip-outs of (CAG)(20) or (CTG)(20). Three outcomes occurred: correct repair, escaped repair and error-prone repair. The choice of repair path depended on nick location and slip-out composition (CAG or CTG). A new form of error-prone repair was detected whereby excess repeats were incompletely excised, constituting a previously unknown path to generate expansions but not deletions. Neuron-like cell extracts yielded each of the three repair outcomes, supporting a role for these processes in (CTG)*(CAG) instability in patient post-mitotic brain cells. Mismatch repair (MMR) and nucleotide excision repair (NER) proteins hMSH2, hMSH3, hMLH1, XPF, XPG or polymerase beta were not required-indicating that their role in instability may precede that of slip-out processing. Differential processing of slipped repeats may explain the differences in mutation patterns between various disease loci or tissues.  相似文献   
17.
Short tandem repeats are highly polymorphic sequences of nucleotides, which are abundant in eukaryotic genome. They form approximately 3% of the total human genome and occur on average in every 10, 000 nucleotides. Due to their small dimension, low mutation, and high level of polymorphism, these markers are intensely used as important genetic markers for mapping studies, disease diagnosis, and human identity testing. In the present study allelic distribution of four autosomal short tandem repeat markers (D21S2055, D21S11, D21S1435 and D21S1411) has been analyzed in Indian population. For determination of heterogeneity and their allelic frequency QF-PCR analysis have been done. All the loci were found highly polymorphic. Marker D21S1411 was the most informative (93.6%) and D21S1435 (70.1%) was the least informative marker in Indian population.  相似文献   
18.
Predictive classification of major structural families and fold types of proteins is investigated deploying logistic regression. Only five to seven dimensional quantitative feature vector representations of tertiary structures are found adequate. Results for benchmark sample of non-homologous proteins from SCOP database are presented. Importance of this work as compared to homology modeling and best-known quantitative approaches is highlighted.  相似文献   
19.
Clusterin (CLU) is an evolutionary conserved molecular chaperone present in different human tissues and fluids and established to be a significant cancer regulator. It controls several cancer-associated cellular events, including cancer cell proliferation, stemness, survival, metastasis, epithelial-mesenchymal transition, therapy resistance, and inhibition of programmed cell death to support cancer growth and recurrence. This multifunctional role of CLU makes it an ideal target for cancer control. More importantly, genetic and antisense-mediated (OGX-011) inhibition of CLU enhances the anticancer potential of different FDA-approved chemotherapeutic drugs at the clinical level, improving patient's survival. In this review, we have discussed the detailed mechanism of CLU-mediated modulation of different cancer-associated signaling pathways. We have also provided updated information on the current preclinical and clinical findings that drive trials in various cancer types for potential targeted cancer therapy.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号