首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2880篇
  免费   210篇
  国内免费   175篇
  3265篇
  2023年   23篇
  2022年   59篇
  2021年   110篇
  2020年   72篇
  2019年   92篇
  2018年   106篇
  2017年   73篇
  2016年   88篇
  2015年   162篇
  2014年   170篇
  2013年   234篇
  2012年   241篇
  2011年   193篇
  2010年   146篇
  2009年   116篇
  2008年   117篇
  2007年   133篇
  2006年   122篇
  2005年   112篇
  2004年   118篇
  2003年   88篇
  2002年   58篇
  2001年   69篇
  2000年   59篇
  1999年   56篇
  1998年   29篇
  1997年   27篇
  1996年   23篇
  1995年   30篇
  1994年   29篇
  1993年   20篇
  1992年   40篇
  1991年   32篇
  1990年   20篇
  1989年   23篇
  1988年   17篇
  1987年   11篇
  1986年   13篇
  1985年   15篇
  1984年   17篇
  1983年   17篇
  1982年   14篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1977年   6篇
  1976年   8篇
  1975年   8篇
  1974年   7篇
  1971年   8篇
排序方式: 共有3265条查询结果,搜索用时 15 毫秒
301.
Hematopoietic stem cells (HSCs) are used therapeutically for hematological diseases and may also serve as a source for nonhematopoietic tissue engineering in the future. In other cell types, ion channels have been investigated as potential targets for the regulation of proliferation and differentiation. However, the ion channels of HSCs remain elusive. Here, we functionally characterized the ion channels of CD34+ cells from human peripheral blood. Using fluorescence-activated cell sorting, we confirmed that the CD34+ cells also express CD45 and CD133. In the CD34+/CD45+/CD133high HSCs, RT-PCR of 58 ion channel mRNAs revealed the coexpression of Kv1.3, Kv7.1, Nav1.7, TASK2, TALK2, TWIK2, TRPC4, TRPC6, TRPM2, TRPM7, and TRPV2. Whole-cell patch clamp recordings identified voltage-gated K+ currents (putatively Kv1.3), pH-sensitive TASK2-like back-ground K+ currents, ADP-ribose-activated TRPM2 currents, temperature-sensitive TRPV2-like currents, and diacylglycerol-analogue-activated TRPC6-like currents. Our results lend new insight into the physiological role of ion channels in HSCs, the specific implications of which require further investigation.  相似文献   
302.
303.
Despite its potent antitumor effect, clinical use of Doxorubicin is limited because of serious side effects including myocardial toxicity. Understanding the cellular mechanism involved in this process in a better manner is beneficial for optimizing Doxorubicin treatment. In the current study, the authors focus on the AMP-activated protein kinase (AMPK) in the said process. In this study, the authors discovered for the first time that Doxorubicin induces AMPK activation in cultured rat embryonic ventricular myocardial H9c2 cells. Reactive oxygen species (ROS)-dependent LKB1 activation serves as the upstream signal for AMPK activation by Doxorubicin. Evidence in support of the activation of AMPK contributing to Doxorubicin-induced H9c2 cell death/apoptosis—probably by modulating multiple downstream signal targets, including regulating JNK, p53, and inhibiting mTORC1—is provided in this article.  相似文献   
304.
Recurrent intracranial aneurysms can occur after either surgical clipping or endovascular therapy. In this article, we present a consecutive series of 18 patients who underwent individual treatment for recurrent aneurysms after primary coil embolization or surgical clipping. During an 8-year period between May 1997 and December 2005, 18 patients underwent individual treatment for recurrent aneurysms. Clinical data and imaging studies of the patients were analyzed retrospectively. Out of the 18 patients, 13 had recurrent aneurysms located in the anterior circulation, and 5 had aneurysms of the posterior circulation. Treatment consisted of coiling in 16 patients and clipping in two patients. Of the 18 patients, 15 achieved a good or excellent recovery, two were paralyzed, and one died post-treatment. Both the surgical clipping and endovascular embolization for the treatment of recurrent intracranial aneurysms can achieve very good radiological results with low mortality rates. One of the key points for the successful treatment of this kind of lesions is the proper, individual, and interdisciplinary patient selection.  相似文献   
305.
Recent studies suggest that cancer stem cells (CSCs) are responsible for cancer resistance to therapies. We therefore investigated how glioblastoma-derived CSCs respond to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Neurospheres were generated from glioblastomas, characterized for CSC properties including self-renewal, cell differentiation and xenograft formation capacity, and analyzed for TRAIL-induced apoptosis, CASP8 genomic status, and caspase-8 protein expression. The neurosphere NSC326 was sensitive to TRAIL-induced apoptosis as evidenced by cell death and caspase-8, -3, and -7 enzymatic activities. In contrast, however, the neurosphere NSC189 was TRAIL-resistant. G-banding analysis identified five chromosomally distinguishable cell populations in the neurospheres. Fluorescence in situ hybridization revealed the variation of chromosome 2 copy number in these populations and the loss of CASP8 locus in 2q33-34 region in a small set of cell populations in the neurosphere. Immunohistochemistry of NSC189 cell blocks revealed the lack of caspase-8 protein in a subset of neurosphere cells. Western blotting and immunohistochemistry of human glioblastoma tumors demonstrated the expression of caspase-8 protein in the vast majority of the tumors as compared to normal human brain tissues that lack the caspase-8 expression. This study shows heterogeneity of glioblastomas and derived CSCs in the genomic status of CASP8, expression of caspase-8, and thus responsiveness to TRAIL-induced apoptosis. Clinic trials may consider genomic analysis of the cancer tissue to identify the genomic loss of CASP8 and use it as a genomic marker to predict the resistance of glioblastomas to TRAIL apoptosis pathway-targeted therapies.  相似文献   
306.
The caudal fin represents a fundamental design feature of fishes and plays an important role in locomotor dynamics in fishes. The shape of caudal is an important parameter in traditional systematics. However, little is known about genes involved in the development of different forms of caudal fins. This study was conducted to identify and map quantitative trait loci (QTL) affecting the length of caudal fin and the ratio between tail length and standard body length in Asian seabass (Lates calcarifer). One F1 family containing 380 offspring was generated by crossing two unrelated individuals. One hundred and seventeen microsatellites almost evenly distributed along the whole genome were genotyped. Length of caudal fin at 90 days post-hatch was measured. QTL analysis detected six significant (genome-wide significant) and two suggestive (linkage-group-wide significant) QTL on seven linkage groups. The six significant QTL explained 5.5–16.6% of the phenotypic variance, suggesting these traits were controlled by multiple genes. Comparative genomics analysis identified several potential candidate genes for the length of caudal fin. The QTL for the length of caudal fin detected for the first time in marine fish may provide a starting point for the future identification of genes involved in the development of different forms of caudal fins in fishes.  相似文献   
307.
Recent advances in sequencing technology have led to a rapid accumulation of mitochondrial DNA (mtDNA) sequences, which now represent the wide spectrum of animal diversity. However, one animal phylum--Ctenophora--has, to date, remained completely unsampled. Ctenophores, a small group of marine animals, are of interest due to their unusual biology, controversial phylogenetic position, and devastating impact as invasive species. Using data from the Mnemiopsis leidyi genome sequencing project, we Polymerase Chain Reaction (PCR) amplified and analyzed its complete mitochondrial (mt-) genome. At just over 10 kb, the mt-genome of M. leidyi is the smallest animal mtDNA ever reported and is among the most derived. It has lost at least 25 genes, including atp6 and all tRNA genes. We show that atp6 has been relocated to the nuclear genome and has acquired introns and a mitochondrial targeting presequence, while tRNA genes have been genuinely lost, along with nuclear-encoded mt-aminoacyl tRNA synthetases. The mt-genome of M. leidyi also displays extremely high rates of sequence evolution, which likely led to the degeneration of both protein and rRNA genes. In particular, encoded rRNA molecules possess little similarity with their homologs in other organisms and have highly reduced secondary structures. At the same time, nuclear encoded mt-ribosomal proteins have undergone expansions, likely to compensate for the reductions in mt-rRNA. The unusual features identified in M. leidyi mtDNA make this organism an interesting system for the study of various aspects of mitochondrial biology, particularly protein and tRNA import and mt-ribosome structures, and add to its value as an emerging model species. Furthermore, the fast-evolving M. leidyi mtDNA should be a convenient molecular marker for species- and population-level studies.  相似文献   
308.
309.
310.
Pang B  Zheng X  Diao B  Cui Z  Zhou H  Gao S  Kan B 《PloS one》2011,6(8):e24267
Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号