全文获取类型
收费全文 | 106篇 |
免费 | 7篇 |
专业分类
113篇 |
出版年
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2017年 | 1篇 |
2016年 | 13篇 |
2015年 | 9篇 |
2014年 | 7篇 |
2013年 | 7篇 |
2012年 | 11篇 |
2011年 | 7篇 |
2010年 | 8篇 |
2009年 | 4篇 |
2008年 | 4篇 |
2007年 | 1篇 |
2006年 | 4篇 |
2005年 | 2篇 |
2004年 | 2篇 |
2003年 | 3篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 4篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1981年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有113条查询结果,搜索用时 15 毫秒
1.
Homobrassinolide induced conformational changes in hexokinase: a possible mechanism for its antidiabetic potential 下载免费PDF全文
Muthuraman Pandurangan Gansukh Enkhtaivan Doo Hwan Kim 《Journal of molecular recognition : JMR》2016,29(6):276-280
Hormonal regulation of cell growth and development, tissue morphology, metabolism and physiological function in animals and man is a well‐established knowledge domain in modern biological science. The present study was carried out to investigate the structural stability of hexokinase when exposed to diabetic levels of glucose and its binding efficiency. The fluorescence study indicated that 28‐homobrassinolide was able to protect or restore the native structure of hexokinase. Proteins are synthesized and fold into the native form to become active. The inability of a protein molecule to remain in its native form is called as protein misfolding and this is because of several factors. Protein aggregation and misfolding are known to play a critical role in several human diseases including diabetes. Homobrassinolide interaction with hexokinase was studied by UV–Vis spectrophotometer and fluorescence spectrophotometer. Results were suggested that the denatured hexokinase was renatured upon binding with homobrassinolide. In silico, docking study was performed to recognize the binding activity of homobrassinolide against a subunit of the glucokinase, and homobrassinolide was able to bind to the drug binding pocket of glucokinase. The glide energy is ?7.1 kcal/mol, suggesting the high binding affinity of homobrassinolide to glucokinase. Overall, these studies predict that the phytohormone 28‐homobrassinolide would function as an anti‐diabetic when present in human and animal diet by augmenting the hexokinase enzyme activity in the animal cell. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
3.
Divya Nedungadi Anupama Binoy Nanjan Pandurangan Bipin G. Nair Nandita Mishra 《Cell biology international》2021,45(1):164-176
Chalcones are biologically active class of compounds, known for their anticancer activities. Here we show for the first time that out of the six synthetic derivatives of chalcone tested, 2′-hydroxy-retrochalcone (HRC) was the most effective in inducing extensive cytoplasmic vacuolation mediated death called paraptosis in malignant breast and cervical cancer cells. The cell death by HRC is found to be nonapoptotic in nature due to the absence of DNA fragmentation, PARP cleavage, and phosphatidylserine externalization. It was also found to be nonautophagic as there was an increase in the levels of autophagic markers LC3I, LC3II and p62. Immunofluorescence with the endoplasmic reticulum (ER) marker protein calreticulin showed that the cytoplasmic vacuoles formed were derived from the ER. This ER dilation was due to ER stress as evidenced from the increase in polyubiquitinated proteins, Bip and CHOP. Docking studies revealed that HRC could bind to the Thr1 residue on the active site of the chymotrypsin-like subunit of the proteasome. The inhibition of proteasomal activity was further confirmed by the fluorescence based assay of the chymotrypsin-like subunit of the 26S proteasome. The cell death by HRC was also triggered by the collapse of mitochondrial membrane potential and depletion of ATP. Pretreatment with thiol antioxidants and cycloheximide were able to inhibit this programmed cell death. Thus our data suggest that HRC can effectively kill cancer cells via paraptosis, an alternative death pathway and can be a potential lead molecule for anticancer therapy. 相似文献
4.
The present study aimed to investigate the effect of ZnO nanoparticles on alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) enzyme expressions in C2C12 cells. ZnO nanoparticles are widely used in the several cosmetic lotions and other biomedical products. Several studies report on ZnO nanoparticle mediated cytotoxicity. However, there are no reports on the effect of ZnO nanoparticles on ALT, AST, ALP and LDH enzyme expressions in C2C12 cells. A cytotoxicity assay was carried out to determine the effect of ZnO nanoparticles (1–5 mg/ml) on C2C12 cell viability at 48 and 72 h. ZnO nanoparticles increased ALT, AST, ALP and LDH enzyme mRNA expression and their activities in C2C12 cells. In conclusion, the present study showed that ZnO nanoparticles increased these enzyme activities and its mRNA expression in C2C12 cells in a dose-dependent manner. 相似文献
5.
Muthuraman Pandurangan Dawoon Jeong Touseef Amna Hoa Van Ba Inho Hwang 《In vitro cellular & developmental biology. Animal》2012,48(9):577-582
The present study was carried out to understand the co-culture effect of C2C12 and 3T3-L1 preadipocyte cells on calpain, caspase, and heat shock protein (Hsp) systems. Calpains, caspases, and heat shock proteins play critical roles in the growth and development of mammalian cells. Cells were co-cultured using transwell inserts with a 0.4-??m porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates and inserts containing C2C12 transferred to 3T3-L1 plates. Following co-culture for 24 and 48?h, the cells in the lower well were harvested for analysis. Calpains include ??-calpain, m-calpain, and their specific inhibitor calpastatin. The expression pattern of ??-calpain did not change in the co-cultured C2C12 and 3T3-L1 cells, whereas m-capain mRNA expression significantly reduced in the 48-h co-cultured 3T3-L1 cells. Calpastatin mRNA expression significantly increased in the 48-h co-cultured C2C12 cells. Caspase-7 mRNA expression did not change in the 24- and 48-h co-cultured C2C12 and 3T3-L1 cells. Caspase-3 mRNA expression significantly reduced in the 24- and 48-h co-cultured 3T3-L1 cells; caspase-9 mRNA had a significant reduction only at 48?h, whereas caspase-9 mRNA expression significantly increased in the 48-h co-cultured C2C12 cells. Hsp27 and Hsp90 mRNA expressions are significantly reduced in the 24- and 48-h co-cultured C2C12 and 3T3-L1 cells, whereas Hsp70 mRNA expression significantly increased in the 48-h co-cultured 3T3-L1 cells. The co-culture reflects three-dimensional views of C2C12 and 3T3-L1 cell types as in vivo, which is quite distinct from the one-dimensional monocultured C2C12 and 3T3-L1 cells. 相似文献
6.
Elemental distribution in striated muscle and the effects of hypertonicity: Electron probe analysis of cryo sections 总被引:11,自引:4,他引:11 下载免费PDF全文
A method of rapid freezing in supercooled Freon 22 (monochlorodifluoromethane) followed by cryoultramicrotomy is described and shown to yield ultrathin sections in which both the cellular ultrastructure and the distribution of diffusible ions across the cell membrane are preserved and intracellular compartmentalization of diffusabler ions can be quantitated. Quantitative electron probe analysis (Shuman, H., A.V. Somlyo, and A.P. Somlyo. 1976. Ultramicros. 1:317-339.) of freeze-dried ultrathin cryto sections was found to provide a valid measure of the composition of cells and cellular organelles and was used to determine the ionic composition of the in situ terminal cisternae of the sarcoplasmic reticulum (SR), the distribution of CI in skeletal muscle, and the effects of hypertonic solutions on the subcellular composition if striated muscle. There was no evidence of sequestered CI in the terminal cisternae of resting muscles, although calcium (66mmol/kg dry wt +/- 4.6 SE) was detected. The values of [C1](i) determined with small (50-100 nm) diameter probes over cytoplasm excluding organelles over nuclei or terminal cisternae were not significantly different. Mitochondria partially excluded C1, with a cytoplasmic/ mitochondrial Ci ratio of 2.4 +/- 0.88 SD. The elemental concentrations (mmol/kg dry wt +/- SD) of muscle fibers measured with 0.5-9-μm diameter electron probes in normal frog striated muscle were: P, 302 +/- 4.3; S, 189 +/- 2.9;C1, 24 +/- 1.1;K, 404 +/- 4.3, and Mg, 39 +/- 2.1. It is concluded that: (a) in normal muscle the "excess CI" measured with previous bulk chemical analyses and flux studies is not compartmentalized in the SR or in other cellular organelles, and (b) the cytoplasmic C1 in low [K](0) solutions exceeds that predicted by a passive electrochemical distribution. Hypertonic 2.2 X NaCl, 2.5 X sucrose, or 2.2 X Na isethionate produced: (a) swollen vacuoles, frequently paired, adjacent to the Z lines and containing significantly higher than cytoplasmic concentrations of Na and Cl or S (isethionate), but no detectable Ca, and (b) granules of Ca, Mg, and P = approximately (6 Ca + 1 Mg)/6P in the longitudinal SR. It is concluded that hypertonicity produces compartmentalized domains of extracellular solutes within the muscle fibers and translocates Ca into the longitudinal tubules. 相似文献
7.
We present RIBFIND, a method for detecting flexibility in protein structures via the clustering of secondary structural elements (SSEs) into rigid bodies. To test the usefulness of the method in refining atomic structures within cryoEM density we incorporated it into our flexible fitting protocol (Flex-EM). Our benchmark includes 13 pairs of protein structures in two conformations each, one of which is represented by a corresponding cryoEM map. Refining the structures in simulated and experimental maps at the 5–15 Å resolution range using rigid bodies identified by RIBFIND shows a significant improvement over using individual SSEs as rigid bodies. For the 15 Å resolution simulated maps, using RIBFIND-based rigid bodies improves the initial fits by 40.64% on average, as compared to 26.52% when using individual SSEs. Furthermore, for some test cases we show that at the sub-nanometer resolution range the fits can be further improved by applying a two-stage refinement protocol (using RIBFIND-based refinement followed by an SSE-based refinement). The method is stand-alone and could serve as a general interactive tool for guiding flexible fitting into EM maps. 相似文献
8.
Wb14 of Wuchereria bancrofti, an orthologue of Brugia malayiSXP-1 and W. bancrofti SXP-1, was amplified from genomic DNA of W. bancrofti microfilaria collected from four distant geographical locations in India viz., Vellore, Bhubaneshwar, Pondicherry and Sevagram. The gene was sub-cloned in a prokaryotic vector pRSET and expressed in Escherichia coli as a truncated protein (∼23 kDa). The nucleotide sequence of the gene is 98% similar to that of WbSXP-1 and is found to be intron-less. However, the analysis and comparison of the derived amino acid sequence with WbSXP-1 showed that Wb14 is truncated at amino acid position 153. The distribution of the two genes in the studied four geographical locations indicated that WbSXP-1 is prevalent only in parasite samples from Sevagram while Wb14 is present in parasites from all the other locations. Only a limited polymorphism was observed in both the genes among the parasites from different geographical locations. 相似文献
9.
10.
L. Ramya Shankaran Nehru Viji Pandurangan Arun Prasad Vadivel Kanagasabai Namasivayam Gautham 《Biophysical reviews》2010,2(4):169-179
This review describes the MOLS method and its applications. This computational method has been developed in our laboratory primarily to explore the conformational space of small peptides and identify features of interest, particularly the minima, i.e., the low energy conformations. A systematic “brute-force” search through the vast conformational space for such features faces the insurmountable problem of combinatorial explosion, whilst other techniques, e.g., Monte Carlo searches, are somewhat limited in their region of exploration and may be considered inexhaustive. The MOLS method, on the other hand, uses a sampling technique commonly employed in experimental design theory to identify a small sample of the conformational space that nevertheless retains information about the entire space. The information is extracted using a technique that is a variant of the self-consistent mean field technique, which has been used to identify, for example, the optimal set of side-chain conformations in a protein. Applications of the MOLS method to understand peptide structure, predict the structures of loops in proteins, predict three-dimensional structures of small proteins, and arrive at the best conformation, orientation, and positions of a small molecule ligand in a protein receptor site have all yielded satisfactory results. 相似文献