首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   19篇
  146篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   11篇
  2013年   6篇
  2012年   11篇
  2011年   5篇
  2010年   10篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   7篇
  1999年   9篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
71.
Although the color of indigo is strongly dependent on its environment, it is blue in most commonly encountered situations. Indigo's absorption at such long wavelengths for such a small molecule is unique, and I provide here an overview of the concepts advanced to account for this feature. A traditional valence–bond approach may be used to provide a reasonable qualitative explanation. A more rigorous, quantitative explanation is provided by molecular orbital methods of varying degrees of sophistication and several explanations have been proposed based on these models. Commonly, it is suggested that the important structural unit in determining color is based on the cross-conjugated “H-chromophore” concept. A second closely related explanation describes it as two symmetrically coupled merocyanine chains. Another proposal suggests that the basic chromophore may be interpreted as the aza analogue of two coupled anti aromatic-cyclopentadienyl ions. PiSYSTEM, a commercially available quantum mechanics program, has been used to provide a successful quantitative account of the colors of indigo and indirubin, a red isomer.  相似文献   
72.
Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB) with dietary molecules, Betuilnic acid (BA) and Thymoquinone (TQ), stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI) revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK) M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.  相似文献   
73.
Poly(amidoamine) dendrimers (generations 5 and 6) with amine termini were conjugated with peptides containing the arginine-glycine-aspartic acid (RGD) sequence having in view their application as gene delivery vectors. The idea behind the work was to take advantage of the cationic nature of dendrimers and of the integrin targeting capabilities of the RGD motif to improve gene delivery. Dendrimers were used as scaffolds for RGD clustering and, by controlling the number of peptides (4, 8, and 16) linked to each dendrimer, it was possible to evaluate the effect of RGD density on the gene delivery process. The new vectors were characterized in respect to their ability to neutralize and compact plasmid DNA (pDNA). The complexes formed by the vectors and pDNA were studied concerning their size, zeta potential, capacity of being internalized by cells and ability of transferring genes. Transfection efficiency was analyzed, first, by using a pDNA encoding for Enhanced Green Fluorescent Protein and Firefly Luciferase and, second, by using a pDNA encoding for Bone Morphogenetic Protein-2. Gene expression in mesenchymal stem cells was enhanced using the new vectors in comparison to native dendrimers and was shown to be dependent on the electrostatic interaction established between the dendrimer moiety and the cell surface, as well as on the RGD density of nanoclusters. The use of dendrimer scaffolds for RGD cluster formation is a new approach that can be extended beyond gene delivery applications, whenever RGD clustering is important for modulating cellular responses.  相似文献   
74.
A Rani  E Pandita  S Rahman  S Deep  AK Sau 《PloS one》2012,7(7):e40487
Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.  相似文献   
75.

Background

Mucopolysaccharidosis type I (MPSI) is caused by a deficiency in alpha-L iduronidase (IDUA), which leads to lysosomal accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. While the currently available therapies have good systemic effects, they only minimally affect the neurodegenerative process. Based on the neuroprotective and tissue regenerative properties of mesenchymal stem cells (MSCs), we hypothesized that the administration of MSCs transduced with a murine leukemia virus (MLV) vector expressing IDUA to IDUA KO mouse brains could reduce GAG deposition in the brain and, as a result, improve neurofunctionality, as measured by exploratory activity.

Methods

MSCs infected with an MLV vector encoding IDUA were injected into the left ventricle of the brain of 12- or 25-month-old IDUA KO mice. The behavior of the treated mice in the elevated plus maze and open field tests was observed for 1 to 2 months. Following these observations, the brains were removed for biochemical and histological analyses.

Results

After 1 or 2 months of observation, the presence of the transgene in the brain tissue of almost all of the treated mice was confirmed using PCR, and a significant reduction in GAG deposition was observed. This reduction was directly reflected in an improvement in exploratory activity in the open field and the elevated plus maze tests. Despite these behavioral improvements and the reduction in GAG deposition, IDUA activity was undetectable in these samples. Overall, these results indicate that while the initial level of IDUA was not sustainable for a month, it was enough to reduce and maintain low GAG deposition and improve the exploratory activity for months.

Conclusions

These data show that gene therapy, via the direct injection of IDUA-expressing MSCs into the brain, is an effective way to treat neurodegeneration in MPSI mice.  相似文献   
76.
The cellular response to ionizing radiation (IR) involves a variety of mechanisms to repair damage and maintain cell survival. We previously reported that the proteasome activator PA200 promotes long-term cell survival after IR exposure. The molecular function of PA200 is to enhance proteasome-mediated cleavage after glutamate; however, it is not known how this molecular function promotes survival after IR exposure. Here, we report that upon IR exposure, cellular demand for exogenous glutamine is increased. Cells containing PA200 are capable of surviving this IR-induced glutamine demand, whereas PA200-deficient cells show impaired long-term survival. Additional glutamine supplementation reverses the radiosensitivity of PA200-knockdown cells suggesting impaired glutamine homeostasis in these cells. Indeed, PA200-knockdown cells are unable to maintain intracellular glutamine levels. Furthermore, when extracellular glutamine is limiting, cells that contain PA200 respond by slowing growth, but PA200-knockdown cells and cells in which post-glutamyl proteasome activity is inhibited are nonresponsive and continue rapid growth. This cellular unresponsiveness to nutrient depletion is also reflected at the level of the mTOR substrate ribosomal S6 kinase (S6K). Thus, inability to restrict growth causes PA200-deficient cells to continue growing and eventually die due to lack of available glutamine. Together, these data indicate an important role for PA200 and post-glutamyl proteasome activity in maintaining glutamine homeostasis, which appears to be especially important for long-term survival of tumor cells after radiation exposure.  相似文献   
77.
In vitro selection has been an essential tool in the development of recombinant antibodies against various antigen targets. Deep sequencing has recently been gaining ground as an alternative and valuable method to analyze such antibody selections. The analysis provides a novel and extremely detailed view of selected antibody populations, and allows the identification of specific antibodies using only sequencing data, potentially eliminating the need for expensive and laborious low-throughput screening methods such as enzyme-linked immunosorbant assay. The high cost and the need for bioinformatics experts and powerful computer clusters, however, have limited the general use of deep sequencing in antibody selections. Here, we describe the AbMining ToolBox, an open source software package for the straightforward analysis of antibody libraries sequenced by the three main next generation sequencing platforms (454, Ion Torrent, MiSeq). The ToolBox is able to identify heavy chain CDR3s as effectively as more computationally intense software, and can be easily adapted to analyze other portions of antibody variable genes, as well as the selection outputs of libraries based on different scaffolds. The software runs on all common operating systems (Microsoft Windows, Mac OS X, Linux), on standard personal computers, and sequence analysis of 1–2 million reads can be accomplished in 10–15 min, a fraction of the time of competing software. Use of the ToolBox will allow the average researcher to incorporate deep sequence analysis into routine selections from antibody display libraries.  相似文献   
78.
Tej K. Pandita 《DNA Repair》2012,11(10):853-856
The fourteenth international Ataxia-Telangiectasia Workshop 2012 (ATW2012) (www.atw2012.com) on ataxia-telangiectasia (AT) and the role of the ataxia telangiectasia mutated (ATM) gene in DNA repair, neurological disease, cancer and related topics was held from February 07 to 11, 2012 in Delhi, India. The international ATW2012 meeting reported the latest advances in ATM research as well as potential therapeutic treatments for A-T. The meeting was attended by a productive mix of scientists, ranging from those prominent in the initial characterization of the underlying genetic defect to young scientists just entering the field. In broad terms, three main themes were discussed at the meeting: first, a wealth of new details emerged on DNA damage signaling/repair mechanisms for which ATM is a critical element; secondly, important functions for ATM in previously unrelated cellular pathways were identified; and thirdly, new physiological effects and potential therapeutic treatments related to A-T were presented. This report summarizes below a sampling of the many interesting results from the meeting.  相似文献   
79.
80.
hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.   总被引:56,自引:0,他引:56  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号