首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2901篇
  免费   142篇
  国内免费   4篇
  2023年   28篇
  2022年   47篇
  2021年   80篇
  2020年   51篇
  2019年   58篇
  2018年   98篇
  2017年   76篇
  2016年   89篇
  2015年   138篇
  2014年   163篇
  2013年   222篇
  2012年   245篇
  2011年   204篇
  2010年   137篇
  2009年   135篇
  2008年   140篇
  2007年   123篇
  2006年   111篇
  2005年   94篇
  2004年   88篇
  2003年   77篇
  2002年   80篇
  2001年   52篇
  2000年   49篇
  1999年   41篇
  1998年   17篇
  1997年   11篇
  1996年   17篇
  1995年   10篇
  1994年   13篇
  1993年   9篇
  1992年   22篇
  1991年   22篇
  1990年   17篇
  1989年   27篇
  1988年   24篇
  1987年   23篇
  1986年   18篇
  1985年   19篇
  1984年   22篇
  1983年   8篇
  1982年   16篇
  1981年   9篇
  1980年   11篇
  1979年   19篇
  1978年   14篇
  1977年   13篇
  1976年   9篇
  1975年   7篇
  1974年   6篇
排序方式: 共有3047条查询结果,搜索用时 15 毫秒
81.
Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tolerance to abiotic stresses. Yeast cells transformed with CrMPK3 was found to show enhanced tolerance to UV and heat stress. Comparison of CrMPK3 and SLT2, a MAPK from yeast shows high-sequence identity particularly at conserved domains. Additionally, heat stress is also shown to activate a 43 kDa MAP kinase, possibly CrMPK3 in C. roseus leaves. These findings indicate the role of CrMPK3 in stress-induced MIA accumulation as well as in stress tolerance.  相似文献   
82.
83.
Drought is the major environmental stress that limits rice productivity worldwide. In vitro somaclonal variation using different selection agents has been used for crop improvement. Here, rice plants of cv PR113 were selected in vitro on 30, 50 and 70 g L-1 polyethylene glycol 6,000 (PEG). Callus growth, proliferation, calli volume (first and second culture) and plantlet regeneration (third culture) were found to be decreased upto a certain level to acquire tolerance to PEG-induced drought. From the field data, 30 g L-1 PEG lines showed higher vegetative growth (plant height, tiller number, leaf number, shoot weight and root growth) as compared with 50 g L-1 PEG selected somaclone lines under limited irrigation. The yield parameters-panicle length, panicle weight, grains per panicle, 1,000-grain weight, grain yield per plant, harvest index and grain straw ratio were also higher in 30 g L-1 PEG lines as compared with 50 g L-1 PEG lines. The results, therefore indicate that 30 g L-1 PEG selected somaclone lines were more suited than 50 g L-1 PEG selected somaclone lines under stress as compared with WT. The finding suggests that rice cv PR113 somaclones generated on PEG are found to be drought tolerant under field condition with better yield.  相似文献   
84.
Malformation is arguably the most crucial disease of mango (Mangifera indica L.) at present. It is receiving great attention not only because of its widespread and destructive nature but also because of its etiology and control is not absolutely understood. Recently, Fusarium mangiferae is found to be associated with mango malformation disease. There are indications that stress ethylene production could be involved in the disease. Here we have shown the first direct evidence of production of ethylene in pure culture of F. mangiferae obtained from mango. The study also revealed that all the isolates dissected from mango acquire morphological features of F. mangiferae showing most similarity to the features of species with accepted standard features. The isolates of F. mangiferae from mango were observed to produce ethylene in significant amounts, ranging from 9.28–13.66 n mol/g dry wt/day. The findings presented here suggest that F. mangiferae could contribute to the malformation of mango by producing ethylene and probably stimulating stress ethylene production in malformed tissue of mango. Ethylene might be produced through 2-oxoglutarate-dependent oxygenase-type ethylene-forming-enzyme (EFE) pathway in Fusarium sp, which needs to be investigated.  相似文献   
85.
86.
The use of medicinal plants for different therapeutic values is well documented in African continent. African diverse biodiversity hotspots provide a wide range of endemic species, which ensures a potential medicinal value. The feasible conservation approach and sustainable harvesting for the medicinal species remains a huge challenge. However, conservation approach through different biotechnological tools such as micropropagation, somatic embryogenesis, synthetic seed production, hairy root culture, molecular markers based study and cryopreservation of endemic African medicinal species is much crucial. In this review, an attempt has been made to provide different in vitro biotechnological approaches for the conservation of African medicinal species. The present review will be helpful in further technology development and deciding the priorities at decision-making levels for in vitro conservation and sustainable use of African medicinal species.  相似文献   
87.
Prasad  Archana  Patel  Preeti  Pandey  Shatrujeet  Niranjan  Abhishek  Misra  Pratibha 《Protoplasma》2020,257(2):561-572
Protoplasma - Growth and production kinetics of three important glycoalkaloids viz. α-solanine, solanidine, and solasodine in two contrasting prickly and prickleless plants of Solanum viarum...  相似文献   
88.
Abstract

Mutation in two genes deglycase gene (DJ-1) and retromer complex component gene (VPS35) are linked with neurodegenerative disorder such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. DJ-1 gene located at 1p36 chromosomal position and involved in PD pathogenesis through many pathways including mitochondrial dysfunction and oxidative injury. VPS35 gene located at 16q13-q21 chromosomal position and the two pathways, the Wnt signaling pathway, and retromer-mediated DMT1 missorting are proposed for basis of VPS35 related PD. The study focuses on identifying most deleterious SNPs through computational analysis. Result obtained from various bioinformatics tools shows that D149A is most deleterious in DJ-1 and A54W, R365H, and V717M are most deleterious in VPS35. To understand the functionality of protein comparative modeling of DJ-1 and VPS35 native and mutants was done by MODELLER. The generated structures are validated by two web servers–ProSa and RAMPAGE. Molecular dynamic simulation (MDS) analysis done for the most validated structures to know the functional and structural nature of native and mutants protein of DJ-1 and VPS35. Native structure of DJ-1 and VPS35 show more flexibility through MDS analysis. DJ-1 D149A mutant structures become more compact which shows the structural perturbation and loss of DJ-1 protein function which in turn are probable cause for PD. A54W, R365H, and V717M mutant protein of VPS35 also shows compactness which cause structure perturbation and absence of retromer function which likely to be linked to PD pathogenesis. This in silico study may provide a new insight for fundamental molecular mechanism involved in Parkinson’s disease.

Communicated by Ramaswamy H. Sarma  相似文献   
89.
Molecular Biology Reports - Promoter methylation mediated silencing of tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC). Tumor suppressor gene,...  相似文献   
90.
Kumar  Alok  Kalita  J.  Sinha  Rohit A.  Singh  Gajendra  B  Anjum  Shukla  Mukti  Tiwari  Swasti  Dhole  T. N.  Misra  U. K. 《Neurochemical research》2020,45(9):2184-2195
Neurochemical Research - Role of autophagy in Japanese encephalitis viral (JEV) infection is not well known. In the present study, we reported the role of autophagy flux in microglia activation,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号