首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2901篇
  免费   142篇
  国内免费   4篇
  3047篇
  2023年   28篇
  2022年   47篇
  2021年   80篇
  2020年   51篇
  2019年   58篇
  2018年   98篇
  2017年   76篇
  2016年   89篇
  2015年   138篇
  2014年   163篇
  2013年   222篇
  2012年   245篇
  2011年   204篇
  2010年   137篇
  2009年   135篇
  2008年   140篇
  2007年   123篇
  2006年   111篇
  2005年   94篇
  2004年   88篇
  2003年   77篇
  2002年   80篇
  2001年   52篇
  2000年   49篇
  1999年   41篇
  1998年   17篇
  1997年   11篇
  1996年   17篇
  1995年   10篇
  1994年   13篇
  1993年   9篇
  1992年   22篇
  1991年   22篇
  1990年   17篇
  1989年   27篇
  1988年   24篇
  1987年   23篇
  1986年   18篇
  1985年   19篇
  1984年   22篇
  1983年   8篇
  1982年   16篇
  1981年   9篇
  1980年   11篇
  1979年   19篇
  1978年   14篇
  1977年   13篇
  1976年   9篇
  1975年   7篇
  1974年   6篇
排序方式: 共有3047条查询结果,搜索用时 15 毫秒
41.
Cervical cancer is the second most common cause of cancer-related death among women worldwide, especially in developing countries. Oxidative stress has been associated with cervical cancer. Many studies demonstrated that the low level of antioxidants induces the production of free radicals that cause lipid peroxidation, DNA, and protein damage leading to mutations that favors malignant transformation. This is a case-control institutional study conducted to evaluate the level of oxidative stress in cervical cancer patients and the age-matched healthy controls. We measured level of TBARS expressed as MDA, activity of SOD and GSH level by the spectrophotometric method, and level of 8-OHdG was estimated using a competitive sandwich ELISA assay. Our results showed a significant increase in the level of lipid peroxidation in group IV when compared to the control, group II and group III (p < 0.001). The activity of SOD was also significantly higher in group IV when compared to the control group (p < 0.001), group II (p < 0.001), and group III (p < 0.001). The level of GSH was also significantly lower in group IV when compared to the control group (p < 0.01), group II (p < 0.01), and group III (p < 0.01). The level of 8-OHdG was significantly higher in group IV than in the other groups (p < 0.01). The results suggest that oxidative stress is involved in the pathogenesis of cervical cancer, which is demonstrated by an increased level of lipid peroxidation and higher levels of 8-OHdG and an altered antioxidant defense system.  相似文献   
42.
Kim MS  Pandey A 《Proteomics》2012,12(4-5):530-542
Mass spectrometry has rapidly evolved to become the platform of choice for proteomic analysis. While CID remains the major fragmentation method for peptide sequencing, electron transfer dissociation (ETD) is emerging as a complementary method for the characterization of peptides and post-translational modifications (PTMs). Here, we review the evolution of ETD and some of its newer applications including characterization of PTMs, non-tryptic peptides and intact proteins. We will also discuss some of the unique features of ETD such as its complementarity with CID and the use of alternating CID/ETD along with issues pertaining to analysis of ETD data. The potential of ETD for applications such as multiple reaction monitoring and proteogenomics in the future will also be discussed.  相似文献   
43.
AIMS: To exploit conidiospores of Aspergillus niger as a vector for glucose oxidase extraction from solid media, and their direct use as biocatalyst in the bioconversion of glucose to gluconic acid. METHODS AND RESULTS: Spores of A. niger (200 h old) were shown to fully retain all the glucose oxidase synthesized by the mycelium during solid-state fermentation (SSF). They acted as catalyst and carried out the bioconversion reaction effectively, provided they were permeabilized by freezing and thawing. Glucose oxidase activity was found retained in the spores even after repeated washings. Average rate of reaction was 1.5 g l(-1) h(-1) with 102 g l(-1) of gluconic acid produced out of 100 g l(-1) glucose consumed after approx. 100 h reaction, which corresponded to a molar yield close to 93%. These results were obtained with permeabilized spores in the presence of a germination inhibitor, sodium azide. CONCLUSIONS: Spores of A. niger served as efficient catalyst in the model bioconversion reaction after permeabilization. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first detailed study on the ability of A. niger spores to act as reservoir of enzyme synthesized during SSF without its release into solid media. Use of this material served as an innovative concept for enzyme extraction and purification from a solid medium. Moreover, this approach could compete efficiently with the conventional use of mycelial form of the fungus in gluconic acid production.  相似文献   
44.
A Gram positive, rod-shaped potential strain was selected from the pool of bacterial isolates obtained from the Western Ghats forest (India) on the basis of zone of P-solubilization activity. Identification based on 16S rRNA gene sequence revealed that the strain is of Bacillus species, sharing highest sequence similarity to Bacillus tequilensis NRRL B-41771T (99.5%). Strain NII-0943 was able to produce good amount of indole acetic acid (IAA) and was positive for siderophore production. In addition to IAA and siderophore attributes, strain NII-0943 also possessed the characteristics like Ca3(PO4)2 solubilization and growth in nitrogen-free medium. Seed inoculation with the strain NII-0943 resulted in significantly higher root initiation in black pepper cuttings grown under pots. The contents of nitrogen and phosphorus in both soil and plant were also enhanced significantly in treatments inoculated with these bacterial inocula. Hence, based on this evidence it is proposed that strain NII-0943 could be deployed as a plant growth-promoting inoculant to attain the desired results of bacterization.  相似文献   
45.
Mammalian ovary is metabolically active organ and generates by‐products such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) on an extraordinary scale. Both follicular somatic cells as well as oocyte generate ROS and RNS synchronously and their effects are neutralized by intricate array of antioxidants. ROS such as hydrogen peroxide (H2O2) and RNS such as nitric oxide (NO) act as signaling molecules and modulate various aspects of oocyte physiology including meiotic cell cycle arrest and resumption. Generation of intraoocyte H2O2 can induce meiotic resumption from diplotene arrest probably by the activation of adenosine monophosphate (AMP)‐activated protein kinase A (PRKA)—or Ca2+‐mediated pathway. However, reduced intraoocyte NO level may inactivate guanylyl cyclase‐mediated pathway that results in the reduced production of cyclic 3′,5′‐guanosine monophosphate (cGMP). The reduced level of cGMP results in the activation of cyclic 3′,5′‐adenosine monophosphate (cAMP)‐phosphodiesterase 3A (PDE3A), which hydrolyses cAMP. The reduced intraoocyte cAMP results in the activation of maturation promoting factor (MPF) that finally induces meiotic resumption. Thus, a transient increase of intraoocyte H2O2 level and decrease of NO level may signal meiotic resumption from diplotene arrest in mammalian oocytes. J. Cell. Biochem. 111: 521–528, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
46.
The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian isolates. Previous synthetic protocols have been improved to provide a synthetic full length H1N1 type PB1-F2 protein that is encoded by the 'Spanish flu' isolate and an equivalent protein from an avian host that is representative of a highly pathogenic H5N1 'bird flu' isolate, termed SF2 and BF2, respectively. Full length SF2, different mutants of BF2 and a number of fragments of these peptides have been synthesized by either the standard solid-phase peptide synthesis method or by native chemical ligation of unprotected N- and C-terminal peptide fragments. For SF2 chemical ligation made use of the histidine and the cysteine residues located in positions 41 and 42 of the native sequence, respectively, to afford a highly efficient synthesis of SF2 compared to the standard SPPS elongation method. By-product formation at the aspartic acid residue in position 23 was prevented by specific modifications of the SPPS protocol. As the native sequence of BF2 does not contain a cysteine residue two different mutants of BF2 (Y42C) and BF2 (S47C) with appropriate cysteine exchanges were produced. In addition to the full length molecules, fragments of the native sequences were synthesized for comparison of their physical characteristics with those from the H1N1 human isolate A/Puerto Rico/8/34 (H1N1). All peptides were analyzed by mass spectrometry, (1)H NMR spectroscopy, and SDS-PAGE. The protocols allow the synthesis of significant amounts of PB1-F2 and its related peptides. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
47.
Detection of DNA fragmentation and endonucleases in apoptosis   总被引:3,自引:0,他引:3  
DNA degradation during apoptosis is endonuclease mediated and proceeds through an ordered series of stages commencing with the production of large DNA pieces of 300 kb which are then degraded to fragments of 50 kb. The 50-kb fragments are further degraded, in some but not all cells, to smaller pieces (10-40 kb) releasing the small oligonucleosome fragments that are detected as a characteristic DNA ladder on conventional agarose gels. Methodology is presented for the detection of both DNA ladders and the initial stages of DNA fragmentation using pulsed-field gel electrophoresis. We have developed electrophoresis conditions that resolve large fragments of DNA and also retain the smaller fragments on the same gel. Methods for the detection of endonuclease activities responsible for the cleavage of DNA during apoptosis are also presented.  相似文献   
48.
Podophyllotoxin, an aryltetralin lignan, is the source of important anticancer drugs etoposide, teniposide, and etopophos. Roots/rhizome of Podophyllum hexandrum form one of the most important sources of podophyllotoxin. In order to understand genes involved in podophyllotoxin biosynthesis, two suppression subtractive hybridization libraries were synthesized, one each from root/rhizome and leaves using high and low podophyllotoxin-producing plants of P. hexandrum. Sequencing of clones identified a total of 1,141 Expressed Sequence Tags (ESTs) resulting in 354 unique ESTs. Several unique ESTs showed sequence similarity to the genes involved in metabolism, stress/defense responses, and signalling pathways. A few ESTs also showed high sequence similarity with genes which were shown to be involved in podophyllotoxin biosynthesis in other plant species such as pinoresinol/lariciresinol reductase. A full length coding sequence of pinoresinol/lariciresinol reductase (PLR) has been cloned from P. hexandrum which was found to encode protein with 311 amino acids and show sequence similarity with PLR from Forsythia intermedia and Linum spp. Spatial and stress-inducible expression pattern of PhPLR and other known genes of podophyllotoxin biosynthesis, secoisolariciresinol dehydrogenase (PhSDH), and dirigent protein oxidase (PhDPO) have been studied. All the three genes showed wounding and methyl jasmonate-inducible expression pattern. The present work would form a basis for further studies to understand genomics of podophyllotoxin biosynthesis in P. hexandrum.  相似文献   
49.
Protease-treated wheat bran (20% w/v) of particle size less than 300 μm containing 65% (w/w) starch was used for the simultaneous saccharification and l-(+)-lactic acid fermentation by the mixed cultures of Lactobacillus casei and Lactobacillus delbrueckii. Maximum lactate yield after various process optimizations was 123 gl−1 with a productivity of 2.3 gl−1 h−1 corresponding to a conversion of 0.95 g lactic acid per gram starch after 54 h at 37°C. By using protease-treated wheat bran around tenfold decrease in supplementation of the costly medium component, like yeast extract, was achieved together with a considerable increase in the production level.  相似文献   
50.
Epigenetic mechanisms of plant stress responses and adaptation   总被引:3,自引:0,他引:3  
Epigenetics has become one of the hottest topics of research in plant functional genomics since it appears promising in deciphering and imparting stress-adaptive potential in crops and other plant species. Recently, numerous studies have provided new insights into the epigenetic control of stress adaptation. Epigenetic control of stress-induced phenotypic response of plants involves gene regulation. Growing evidence suggest that methylation of DNA in response to stress leads to the variation in phenotype. Transposon mobility, siRNA-mediated methylation and host methyltransferase activation have been implicated in this process. This review presents the current status of epigenetics of plant stress responses with a view to use this knowledge towards engineering plants for stress tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号