首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   8篇
  2021年   5篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   12篇
  2012年   6篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   11篇
  2000年   3篇
  1999年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1974年   1篇
排序方式: 共有145条查询结果,搜索用时 281 毫秒
61.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   
62.
Anthrax protective antigen (PA, 83 kDa), a pore-forming protein, upon protease activation to 63 kDa (PA(63)), translocates lethal factor (LF) and edema factor (EF) from endosomes into the cytosol of the cell. The relatively small size of the heptameric PA(63) pore (approximately 12 angstroms) raises questions as to how large molecules such as LF and EF can move through the pore. In addition, the reported high binding affinity between PA and EF/LF suggests that EF/LF may not dissociate but remain complexed with activated PA(63). In this study, we found that purified (PA(63))(7)-LF complex exhibited biological and functional activities similar to the free LF. Purified LF complexed with PA(63) heptamer was able to cleave both a synthetic peptide substrate and endogenous mitogen-activated protein kinase kinase substrates and kill susceptible macrophage cells. Electrophysiological studies of the complex showed strong rectification of the ionic current at positive voltages, an effect similar to that observed if LF is added to the channels formed by heptameric PA(63) pore. Complexes of (PA(63))(7)-LF found in the plasma of infected animals showed functional activity. Identifying active complex in the blood of infected animals has important implications for therapeutic design, especially those directed against PA and LF. Our studies suggest that the individual toxin components and the complex must be considered as critical targets for anthrax therapeutics.  相似文献   
63.
NAMPT expression is elevated in many cancers, making this protein a potential target for anticancer therapy. We have carried out both NMR based and TR-FRET based fragment screens against human NAMPT and identified six novel binders with a range of potencies. Co-crystal structures were obtained for two of the fragments bound to NAMPT while for the other four fragments force-field driven docking was employed to generate a bound pose. Based on structural insights arising from comparison of the bound fragment poses to that of bound FK866 we were able to synthetically elaborate one of the fragments into a potent NAMPT inhibitor.  相似文献   
64.
It has long been observed that environmental conditions play crucial roles in modulating immunity and disease in plants and animals. For instance, many bacterial plant disease outbreaks occur after periods of high humidity and rain. A critical step in bacterial infection is entry into the plant interior through wounds and natural openings, such as stomata, which are adjustable microscopic pores in the epidermal tissue. Several studies have shown that stomatal closure is an integral part of the plant immune response to reduce pathogen invasion. In this study, we found that high humidity can effectively compromise Pseudomonas syringae-triggered stomatal closure in both Phaseolus vulgaris and Arabidopsis (Arabidopsis thaliana), which is accompanied by early up-regulation of the jasmonic acid (JA) pathway and simultaneous down-regulation of salicylic acid (SA) pathway in guard cells. Furthermore, SA-dependent response, but not JA-dependent response, is faster in guard cells than in whole leaves, suggesting that the SA signaling in guard cells may be independent from other cell types. Thus, we conclude that high humidity, a well-known disease-promoting environmental condition, acts in part by suppressing stomatal defense and is linked to hormone signaling in guard cells.The phyllosphere is one of the most diverse niches for microbe inhabitation. Numerous bacteria can survive and proliferate on the surface of the plant without causing any harm (Lindow and Brandl, 2003). However, for a bacterial pathogen to cause disease, it must penetrate through the plant epidermis and be able to survive and proliferate inside the plant. The mode and mechanism of penetration into the plant tissue is a critical step for infection, especially for bacterial pathogens that rely on natural openings and accidental wounds on the plant surface to colonize internal tissues (Misas-Villamil et al., 2013). Stomata are an example of such openings, providing one of the main routes through which the foliar pathogen Pseudomonas syringae transitions from avirulent epiphytic to virulent endophytic lifestyles (Melotto et al., 2008). This abundant opening in the epidermal tissue is not a passive port that allows unrestricted entry of microbes. It has been shown that plants are able to respond to human and plant bacterial pathogens by actively closing the stomatal pore (McDonald and Cahill, 1999; Melotto et al., 2006; Gudesblat et al., 2009; Zhang et al., 2010; Roy et al., 2013; Arnaud and Hwang, 2015), a phenomenon described as stomatal immunity (Sawinski et al., 2013). Several lines of evidence point to the complexity of this response and show that stomatal closure is an integral basal plant defense mechanism to restrict the invasion of pathogenic bacteria into plant tissues (Ali et al., 2007; Melotto et al., 2008; Zhang et al., 2008; Gudesblat et al., 2009). However, certain bacterial pathogens, such as Xanthomonas campestris pv campestris (Gudesblat et al., 2009), P. syringae pv syringae (Pss) B728a (Schellenberg et al., 2010), and P. syringae pvs tabaci, tomato, and maculicola (Melotto et al., 2006), can successfully cause disease by producing toxins that overcome stomatal immunity. Specifically, P. syringae pv tomato (Pst) DC3000 uses coronatine (COR) as such a toxin.In this study, we focused on elucidating environmental regulation of stomatal-based defense against bacterial invasion. Changes in environmental conditions, such as air relative humidity (RH), light, and carbon dioxide concentration regulate guard cell turgidity that consequently alters stomatal aperture size and the basic functions of stomata in plants, i.e. exchange of photosynthetic gases and regulation of water loss by transpiration (Zelitch, 1969; Schroeder et al., 2001; Fan et al., 2004). In natural conditions, plants are exposed to both biotic and abiotic stresses, and guard cells need to prioritize their response to the simultaneous occurrence of these stresses. For instance, it is a common observation that severe outbreaks of bacterial disease in the field are often associated with periods of heavy rain or high air humidity (Goode and Sasser, 1980). Mechanical wounding of plant tissues by rain might be one way that allows pathogens to bypass the stomatal route and gain unprecedented access to the plant interior. Additionally, the formation of large bacterial aggregates under high humidity on the leaf surface (Monier and Lindow, 2004) and splashing of bacteria during rain may also contribute to the spreading of disease at a higher rate. Interestingly, to ensure infection in the laboratory, researchers commonly expose plants to very high humidity for an extended period after surface inoculation. Here, we demonstrate that high RH compromises stomatal defense in Arabidopsis (Arabidopsis thaliana) and common bean (Phaseolus vulgaris) against P. syringae, allowing more bacteria to enter the leaf tissue and contributing to severe infections. Compromised bacterial-triggered stomatal closure due to high RH is accompanied by changes in plant hormone signaling in Arabidopsis. Specifically, high RH leads to activation of the jasmonic acid (JA) signaling pathway and down-regulation of the salicylic acid (SA) signaling in guard cells. These results connect plant physiology with epidemiology and advance the current understanding of foliar bacterial infection in plants.  相似文献   
65.
A photographic assessment of the head shape of infants who had undergone surgical correction of sagittal synostosis was performed to determine (a) whether this subset could be delineated from an age-matched normal subpopulation and (b) whether two operative procedures differed in achieving normalization of head shape. This retrospective study included 8 patients who underwent extended strip craniectomy, 12 patients who underwent subtotal calvarectomy and cranial vault remodeling, and 12 age-matched subjects with no calvarial abnormality, for a total of 32 subjects. Criteria for inclusion in this study included surgery for sagittal synostosis within the first year of life and postoperative photographs at ages 4 to 8 years (mean, 4.5 years). Each set of images (frontal and lateral profile) were ranked from most to least normal by five lay observers and four professional observers. The rankings were analyzed with statistics designed for ordinal data. Differences in ranking between treatment groups were examined with Kruskal-Wallis rank sums tests. Mean ranks were calculated for lay and professional observers in an attempt to produce simpler and more generalizable results; these means were also analyzed using statistics designed for ordinal data. There was no statistical difference in the ranks of infants who had undergone a surgical correction and the normal subpopulation. In the mean rankings of the lay observers, the normal groups had the highest score mean (15.6), the group with extended strip craniectomy was second (16.0), and the subtotal calvarectomy with calvarial remodeling group was last (17.8) (p = 0.84). In the mean rankings of the professional observers, the normal groups again had the highest score mean (15.8), the subtotal calvarectomy group was second (15.9), and the extended craniectomy group was last (18.6) (p = 0.77). These results suggest that children who have undergone correction of sagittal synostosis in infancy are indistinguishable from their peers, on the basis of fully haired head shape on frontal and lateral photographs, when they begin primary school, irrespective of the type of calvarial surgery.  相似文献   
66.
In this study, an ultra-sensitive biosensor based on a single-walled boron nitride nanotube (SWBNNT) structure is proposed for acetone detection. The molecular structural mechanics-based simulation approach has been used to model the atomic structure of SWBNNTs. The cantilevered and bridged configurations of SWBNNT-based biosensor have been considered for analysis. The resonant frequency shift due to attached mass has been analysed for the mass-based detection of acetone molecules. The present simulation approach is validated by comparing obtained simulated results with the continuum mechanics-based analytical results. Along with detection of the attached molecule, identification of its intermediate landing position along the length of the nanotube is equally important for the better performance of the biosensor systems. The frequency shift-based analysis has been reported for the mass-based detection of acetone molecules as well as its intermediate landing position along the length of the nanotube. The resonant frequency shift variations of the higher order modes of vibration for both the considered configurations of SWBNNTs have been assistive for the identification of intermediate landing position of the acetone molecule. The proposed molecular structural mechanics-based simulation approach is found to be very effectual in terms of simulation of the real atomic structures of the nanotube. The proposed biosensor can achieve extremely high sensitivity at molecular level and it can be potentially used for real-time sensing capability for the acetone concentration for future health monitoring.  相似文献   
67.
An increasing number of results implicating cholesterol metabolism in the pathophysiology of Alzheimer's disease (AD) suggest cholesterol as a target for treatment. Research in genetics, pathology, epidemiology, biochemistry, and cell biology, as well as in animal models, suggests that cholesterol, its transporter in the brain, apolipoprotein E, amyloid precursor protein, and amyloid-β all interact in AD pathogenesis. Surprisingly, key questions remain unanswered due to the lack of sensitive and specific methods for assessing cholesterol levels in the brain at subcellular resolution. The aims of this review are not only to discuss the various methods for measuring cholesterol and its metabolites and to catalog results obtained from AD patients but also to discuss some new data linking high plasma membrane cholesterol with modifications of the endocytic compartments. These studies are particularly relevant to AD pathology, since enlarged endosomes are believed to be the first morphological change observed in AD brains, in both sporadic cases and Down syndrome.  相似文献   
68.
Complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with the Schiff bases salicylidene-o-aminothiophenol (H2L) and thiophene-o-carboxaldeneaniline (SB) have been synthesized and characterized by elemental analyses, magnetic measurements, thermogravimetric analyses as well as infrared spectra and reflectance spectra. The nature of the bonding has been discussed on the basis of IR spectral data. Magnetic susceptibility measurements and electronic spectral data suggest a six-coordinated octahedral structure for these complexes. The complexes of Mn(II), Co(II), Ni(II), Cu(II) are paramagnetic, while Zn(II) and Cd(II) are diamagnetic in nature. The complexes were tested for their antimicrobial activities against Salmonella typhi, Escherichia coli and Serratia marcescens using the "Disc Diffusion Method". The results are compared with the standard drug (tetracycline) and show moderate activity.  相似文献   
69.
The bis-indoles are a novel class of compounds with potent antibacterial activity against a broad spectrum of Gram-positive and Gram-negative pathogens. The mechanism of action of these compounds has not been clearly defined. To study the mechanism of action of bis-indoles, selections for mutants of Staphylococcus aureus NCTC 8325 with reduced susceptibility to several chemically related bis-indoles were carried out using serial passages in subinhibitory compound concentrations. Resistant mutants were only obtained for one of the four bis-indoles tested (MBX-1090), and these appeared at concentrations up to 16X MIC within 10–12 passages. MBX-1090 resistance mutations produced a truncated open reading frame of mepR (SAOUHSC_00314), a gene encoding a MarR-like repressor. MepR regulates expression of mepA (SAOUHSC_00315), which encodes a member of the Multidrug and Toxic Compound Extrusion (MATE) family of efflux pumps. MBX-1090 resistance was reverted when mepR (wild type) was provided in trans. Microarray experiments and RT-PCR experiments confirmed that over-expression of mepA is required for resistance. Interestingly, MBX-1090 resistant mutants and strains overexpressing mepA from an expression vector did not exhibit cross-resistance to closely related bis-indole compounds. MBX-1090 did not induce expression of mepA, suggesting that this compound does not directly interact with MepR. Conversely, the bis-indoles that were not substrates of MepA strongly induced mepA expression. The results of this study suggest that MepA and MepR exhibit remarkably distinct substrate specificity for closely related bis-indoles.  相似文献   
70.
Plant Molecular Biology Reporter - Flowering is one of the major developmental processes that govern the economic yield of crop plants. However, little is known about the molecular mechanisms...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号