首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   8篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   12篇
  2012年   6篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   11篇
  2000年   3篇
  1999年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1974年   1篇
排序方式: 共有146条查询结果,搜索用时 31 毫秒
101.
Epidemiological, human, animal, and cell culture studies show that n−3 fatty acids, especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), reduce the risk factors of cardiovascular diseases. EPA and DHA, rather than ALA, have been the focus of research on the n−3 fatty acids, probably due to the relatively inefficient conversion of ALA to EPA and DHA in rodents and humans. This review will assess our current understanding of the effects and potential mechanisms of actions of individual n−3 fatty acids on multiple risk factors of metabolic syndrome. Evidence for pharmacological responses and the mechanism of action of each of the n−3 fatty acid trio will be discussed for the major risk factors of metabolic syndrome, especially adiposity, dyslipidemia, insulin resistance and diabetes, hypertension, oxidative stress, and inflammation. Metabolism of n−3 and n−6 fatty acids as well as the interactions of n−3 fatty acids with nutrients, gene expression, and disease states will be addressed to provide a rationale for the use of n−3 fatty acids to reduce the risk factors of metabolic syndrome.  相似文献   
102.
Botulinum neurotoxins (BoNTs) are among the most lethal biological substances to have been weaponized and are listed as biodefense category A agents. Currently, no small molecule (non-peptidic) therapeutics exist to counter this threat; hence, identifying and developing compounds that inhibit BoNTs is a high priority. In the present study, a high-throughput assay was used to identify small molecules that inhibit the metalloprotease activity of BoNT serotype A light chain (BoNT/A LC). All inhibitors were further verified using a HPLC-based assay. Conformational analyses of these compounds, in conjunction with molecular docking studies, were used to predict structural features that contribute to inhibitor binding and potency. Based on these results, a common pharmacophore for BoNT/A LC inhibitors is proposed. This is the first study to report small molecules (non-peptidics) that inhibit BoNT/A LC metalloprotease activity in the low microM range.  相似文献   
103.
Epidermal growth factor stimulates proton efflux from chondrocytic cells   总被引:6,自引:0,他引:6  
Proton efflux from chondrocytes alters the extracellular pH and ionic composition of cartilage, and influences the synthesis and degradation of extracellular matrix. Epidermal growth factor (EGF) promotes chondrocyte proliferation during skeletal development and accumulates in the synovial fluid in rheumatoid arthritis. The purpose of this study was to investigate the effect of EGF on proton efflux from chondrocytes. When monitored using a Cytosensor microphysiometer, EGF was found to rapidly activate proton efflux from CFK2 chondrocytic cells and rat articular chondrocytes. The actions of EGF were concentration-dependent with half-maximal effects at 0.3-0.7 ng/ml. Partial desensitization and time-dependent recovery of the response were observed following repeated exposures to EGF. EGF-induced proton efflux was dependent on extracellular glucose, and inhibitors of Na(+)/H(+) exchange (NHE) markedly attenuated the initial increase in proton efflux. The response was diminished by inhibitors of phosphatidylinositol 3-kinase and phospholipase C, but not by inhibitors of MEK (MAPK/ERK kinase) or protein kinase A or C. Thus, EGF-induced proton efflux involves glucose metabolism and NHE, and is regulated by a discrete subset of EGF-activated signaling pathways. In vivo, proton efflux induced by EGF may lead to an acidic environment, enhancing turnover of cartilage matrix during development and in rheumatoid arthritis.  相似文献   
104.
Structural studies in proteases have been hampered because of their inherent autolytic function. However, since autolysis is known to be mediated via protein unfolding, careful monitoring of the autolytic reaction has the potential to throw light on the folding-unfolding equilibria. In this paper we describe real time nuclear magnetic resonance investigations on the tethered dimer construct of the human immunodeficiency virus-1 protease, which have yielded insights into the relative stabilities of several residues in the protein. The residues lying along the active site (bottom, side and top of the active site) and those in helix have lower unfolding free energy values than the other parts of the protein. The residue level stability differences suggest that the protein is well suited to adjust itself in almost all the regions of its structure, as and when perturbations occur, either due to ligand binding or due to mutations.  相似文献   
105.
N S Bhavesh  S C Panchal  R V Hosur 《Biochemistry》2001,40(49):14727-14735
Sequence specific resonance assignment is the primary requirement for all investigations of proteins by NMR methods. In the present postgenomic era where structural genomics and protein folding have occupied the center stage of NMR research, there is a high demand on the speed of resonance assignment, whereas the presently available methods based either on NOESY or on some triple-resonance experiments are rather slow. They also have limited success with unfolded proteins because of the lack of NOEs, and poor dispersion of amide and carbon chemical shifts. This paper describes an efficient approach to rapid resonance assignment that is suitable for both folded and unfolded proteins, making use of the triple-resonance experiments described recently [HNN and HN(C)N]. It has three underlying principles. First, the experiments exploit the (15)N chemical shift dispersions which are generally very good for both folded and unfolded proteins, along two of the three dimensions; second, they directly display sequential amide and (15)N correlations along the polypeptide chain, and third, the sign patterns of the diagonal and the sequential peaks originating from any residue are dependent on the nature of the adjacent residues, especially the glycines and the prolines. These lead to so-called "triplet fixed points" which serve as starting points and/or check points during the course of sequential walks, and explicit side chains assignment becomes less crucial for unambiguous backbone assignment. These features significantly enhance the speed of data analysis, reduce the amount of experimentation required, and thus result in a substantially faster and unambiguous assignment. Following the amide and (15)N assignments, the other proton and carbon assignments can be obtained in a straightforward manner, from the well-established three-dimensional triple-resonance experiments. We have successfully tested the new approach with different proteins in the molecular mass range of 10-22 kDa, and for illustration, we present here the backbone results on the HIV-1 protease-tethered dimer (molecular mass approximately 22 kDa), both in the folded and in the unfolded forms, the two ends of the folding funnel. We believe that the new assignment approach will be of great value for both structural genomics and protein folding research by NMR.  相似文献   
106.
Two contrasting approaches have been used to construct the overall tree of life from molecular data: one involves the analysis of single large datasets, while the other involves joining many independent smaller analyses into a supertree. A recent study uses the latter approach to produce the most complete phylogeny yet of flowering plant families.  相似文献   
107.
The virulent spore-forming bacterium Bacillus anthracis secretes anthrax toxin composed of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease that inactivates key signaling molecules, such as mitogen-activated protein kinase kinases (MAPKK), to ultimately cause cell death. We report here the identification of small molecule (nonpeptidic) inhibitors of LF. Using a two-stage screening assay, we determined the LF inhibitory properties of 19 compounds. Here, we describe six inhibitors on the basis of a pharmacophoric relationship determined using X-ray crystallographic data, molecular docking studies and three-dimensional (3D) database mining from the US National Cancer Institute (NCI) chemical repository. Three of these compounds have K(i) values in the 0.5-5 microM range and show competitive inhibition. These molecular scaffolds may be used to develop therapeutically viable inhibitors of LF.  相似文献   
108.
Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhalational anthrax because they initiate germination and dissemination of spores. Found in high frequency throughout the respiratory track, dendritic cells (DCs) routinely take up foreign particles and migrate to lymph nodes. However, the participation of DCs in phagocytosis and dissemination of spores has not been investigated previously. We found that human DCs readily engulfed fully pathogenic Ames and attenuated B. anthracis spores predominately by coiling phagocytosis. Spores provoked a loss of tissue-retaining chemokine receptors (CCR2, CCR5) with a concurrent increase in lymph node homing receptors (CCR7, CD11c) on the membrane of DCs. After spore infection, immature DCs displayed a mature phenotype (CD83(bright), HLA-DR(bright), CD80(bright), CD86(bright), CD40(bright)) and enhanced costimulatory activity. Surprisingly, spores activated the MAPK cascade (ERK, p38) within 30 min and stimulated expression of several inflammatory response genes by 2 h. MAPK signaling was extinguished by 6 h infection, and there was a dramatic reduction of secreted TNF-alpha, IL-6, and IL-8 in the absence of DC death. This corresponded temporally with enzymatic cleavage of proximal MAPK signaling proteins (MEK-1, MEK-3, and MAP kinase kinase-4) and may indicate activity of anthrax lethal toxin. Taken together, these results suggest that B. anthracis may exploit DCs to facilitate infection.  相似文献   
109.
A novel series of imidazo[4,5-c]pyridines bearing a 1,2,5-oxadiazol-3-ylamine functionality has been developed. These are potent inhibitors of mitogen and stress-activated protein kinase-1.  相似文献   
110.
Summary The intracellular accumulation of ethanol in yeast and its potential effects on growth and fermentation have been topics of controversy for the past several years. The determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate aqueous cell volume was used to examine the question of intracellular ethanol accumulation. An intracellular accumulation of ethanol inSaccharomyces cerevisiae was observed during the early stages of fermentation. However, as fermentation continued, the intracellular and extracellular concentrations of ethanol became similar. Increasing the osmotic pressure of the medium with glucose or sorbitol was observed to cause an increase in the intracellular ethanol concentration. Associated with this was a decrease in yeast growth and fermentation rates. In addition, increasing the osmotic pressure of the medium was observed to cause an increase in glycerol production. Supplementation of the media with excess peptone, yeast extract, magnesium sulfate and potassium phosphate was found to relieve the detrimental effects of high osmotic pressure. Under these conditions, though, no effect on the intracellular and extracellular ethanol distribution was observed. These results indicate that nutrient limitation, and not necessarily intracellular ethanol accumulation, plays a key role during yeast fermentations in media of high osmolarity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号