首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   62篇
  825篇
  2023年   5篇
  2022年   17篇
  2021年   24篇
  2020年   16篇
  2019年   22篇
  2018年   19篇
  2017年   23篇
  2016年   32篇
  2015年   47篇
  2014年   52篇
  2013年   65篇
  2012年   78篇
  2011年   71篇
  2010年   36篇
  2009年   35篇
  2008年   55篇
  2007年   45篇
  2006年   42篇
  2005年   25篇
  2004年   28篇
  2003年   21篇
  2002年   24篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
  1982年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有825条查询结果,搜索用时 15 毫秒
21.
Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.  相似文献   
22.
The probable involvement of phospholipase D (PLD)/phosphatidic acid (PA) signalling in the hyperosmotic stress response of Triticum turgidum root cells was investigated by examining the effects of butanol-1, butanol-2, phosphatidylbutanol (PtdBut), N-acylethanolamine (NAE) and PA on the hyperosmotic response, the organization of the tubulin cytoskeleton and the accumulation of a phosphorylated p38-like mitogen-activated protein (MAP) kinase (phospho-p46) in plasmolysed root cells. The effects of all the treatments were assessed by differential interference contrast (DIC) microscopy of living cells, tubulin immunofluorescence, conventional transmission electron microscopy (TEM), tubulin immunogold localization, protoplast volume measurements and western blot analysis. Butanol-1 and NAE compromised the viability of plasmolysed cells, induced a marked reduction in the plasmolysed protoplast volume, and inhibited hyperosmotically induced tubulin macrotubule formation and the accumulation of phospho-p46. Exogenous PA reinforced the hyperosmotic response of T. turgidum root cells and positively affected tubulin macrotubule formation. Additionally, PA reduced the effects of butanol-1 in plasmolysed cells. Taken together, the data suggest that PLD-mediated PA synthesis occurs upstream of the accumulation of phospho-p46 to regulate hyperosmotically induced macrotubule formation in plasmolysed T. turgidum root cells.  相似文献   
23.
Enoyl-ACP reductase is a catalytic component of the fatty acid synthetase (FAS) type II system in plants that is involved in the de novo fatty acid biosynthesis in plastids. A cDNA encoding an enoyl-ACP reductase responsible for the removal of the trans-unsaturated double bonds to form saturated acyl-ACP has been isolated from a library made from ripening fruits of Olea europaea L. The predicted protein contains 393 amino acid residues including a consensus chloroplast specific transit peptide. A strong homology was observed when olive enoyl-ACP reductase aligned with other plant sequences. Southern hybridization analysis revealed that enoyl-ACP reductase is encoded by a single gene in olives. Northern hybridization showed a transient expression of the enoyl-ACP reductase (ENR) gene at early stages of drupe (5-7 weeks after flowering, WAF), embryo and endosperm (13-16 WAF) while in mesocarp (13-19 WAF) the expression remained at high levels. In situ hybridization showed particularly prominent expression in the palisade and vascular tissue of young leaves, the tapetum, developing pollen grains and vascular tissue of anthers and to less extent in the embryo sac and transmitting tissue of the carpel. The distinctive spatial and temporal regulation of the ENR gene is consistent with major roles, not only in thylakoid membrane formation and fatty acid deposition, but also in the provision of precursor molecules for the biosynthesis of oxilipins that are important in plant tissues involved in transportation and reproduction.  相似文献   
24.
In a previous study, we showed that in situ injection of glycosaminoglycan mimetics called RGTAs (ReGeneraTing Agents) enhanced neovascularization after skeletal muscular ischemia (Desgranges, P., Barbaud, C., Caruelle, J. P., Barritault, D., and Gautron, J. (1999) FASEB J. 13, 761-766). In the present study, we showed that the RGTA OTR4120 modulated angiogenesis in the chicken embryo chorioallantoic membrane assay, in a dose-dependent manner. We therefore investigated the effect of OTR4120 on one of the most specific angiogenesis-regulating heparin-binding growth factors, vascular endothelial growth factor 165 (VEGF165). OTR4120 showed high affinity binding to VEGF165 (Kd = 2.2 nm), as compared with heparin (Kd = 15 nm), and potentiated the affinity of VEGF165 for VEGF receptor-1 and -2 and for neuropilin-1. In vitro, OTR4120 potentiated VEGF165-induced proliferation and migration of human umbilical vein endothelial cells. In the in vivo Matrigel plug angiogenesis assay, OTR4120 in a concentration as low as 3 ng/ml caused a 6-fold increase in VEGF165-induced angiogenesis. Immunohistochemical staining showed a larger number of well differentiated VEGFR-2-expressing-cells in Matrigel sections of OTR4120-treated plug than in control sections. These findings indicate that OTR4120 enhances the VEGF165-induced angiogenesis and therefore may hold promise for treating disorders characterized by deficient angiogenesis.  相似文献   
25.

Background

Helicobacter pylori has changed radically gastroenterologic world, offering a new concept in patients' management. Over time, more medical data gave rise to diverse distant, extragastric manifestations and interactions of the “new” discovered bacterium. Special interest appeared within the field of neurodegenerative diseases and particularly Alzheimer's disease, as the latter and Helicobacter pylori infection are associated with a large public health burden and Alzheimer's disease ranks as the leading cause of disability. However, the relationship between Helicobacter pylori infection and Alzheimer's disease remains uncertain.

Methods

We performed a narrative review regarding a possible connection between Helicobacter pylori and Alzheimer's disease. All accessible relevant (pre)clinical studies written in English were included. Both affected pathologies were briefly analyzed, and relevant studies are discussed, trying to focus on the possible pathogenetic role of this bacterium in Alzheimer's disease.

Results

Data stemming from both epidemiologic studies and animal experiments seem to be rather encouraging, tending to confirm the hypothesis that Helicobacter pylori infection might influence the course of Alzheimer's disease pleiotropically. Possible main mechanisms may include the bacterium's access to the brain via the oral‐nasal‐olfactory pathway or by circulating monocytes (infected with Helicobacter pylori due to defective autophagy) through disrupted blood‐brain barrier, thereby possibly triggering neurodegeneration.

Conclusions

Current data suggest that Helicobacter pylori infection might influence the pathophysiology of Alzheimer's disease. However, further large‐scale randomized controlled trials are mandatory to clarify a possible favorable effect of Helicobacter pylori eradication on Alzheimer's disease pathophysiology, before the recommendation of short‐term and cost‐effective therapeutic regimens against Helicobacter pylori‐related Alzheimer's disease.  相似文献   
26.
27.
The soil nitrogen-fixing bacterium Azotobacter vinelandii possesses two cyclophilins, comprising putative cytoplasmic and periplasmic isoforms, designated as AvPPIB and AvPPIA, respectively. Both recombinant cyclophilins have been purified and their peptidyl-prolyl cis/trans isomerase activity against Suc-Ala-Xaa-Pro-Phe-pNA synthetic peptides has been characterized. The substrate specificity of both cyclophilins is typical for bacterial cyclophilins, with Suc-Ala-Ala-Pro-Phe-pNA being the most rapidly catalyzed substrate. The cytoplasmic cyclophilin also displays a chaperone function in the citrate synthase thermal aggregation assay. Using real-time quantitative RT-PCR, we demonstrate that AvppiB is expressed under various physiological and growth conditions, mainly upregulated by acetate and downregulated by the stationary growth state, while AvppiA shows a tendency for downregulation under the tested conditions. Further, we identified chaperone protein dnaK and UDP-2, 3-diacylglucosamine hydrolase lpxH as probable interacting partners of AvPPIB and we demonstrate their physical interaction by coexpression studies. An increase in AvPPIB PPIase activity in the presence of AvdnaK and a decrease in the presence of AvlpxH further confirms each interaction. However, the PPIase activity does not seem to be essential for those interactions since AvPPIB active site mutants still interact with dnaK and lpxH, while their minor PPIase activity cannot be modulated by the interaction.  相似文献   
28.
The Cytotoxic Necrotizing Factor 1 (CNF1) is a protein toxin which is a major virulence factor of pathogenic Escherichia coli strains. Here, we identified the Lutheran (Lu) adhesion glycoprotein/basal cell adhesion molecule (BCAM) as cellular receptor for CNF1 by co-precipitation of cell surface molecules with tagged toxin. The CNF1-Lu/BCAM interaction was verified by direct protein-protein interaction analysis and competition studies. These studies revealed amino acids 720 to 1014 of CNF1 as the binding site for Lu/BCAM. We suggest two cell interaction sites in CNF1: first the N-terminus, which binds to p37LRP as postulated before. Binding of CNF1 to p37LRP seems to be crucial for the toxin''s action. However, it is not sufficient for the binding of CNF1 to the cell surface. A region directly adjacent to the catalytic domain is a high affinity interaction site for Lu/BCAM. We found Lu/BCAM to be essential for the binding of CNF1 to cells. Cells deficient in Lu/BCAM but expressing p37LRP could not bind labeled CNF1. Therefore, we conclude that LRP and Lu/BCAM are both required for toxin action but with different functions.  相似文献   
29.
30.
Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号