首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20305篇
  免费   1805篇
  国内免费   2325篇
  2024年   52篇
  2023年   283篇
  2022年   683篇
  2021年   1155篇
  2020年   829篇
  2019年   930篇
  2018年   969篇
  2017年   680篇
  2016年   914篇
  2015年   1410篇
  2014年   1540篇
  2013年   1612篇
  2012年   1993篇
  2011年   1793篇
  2010年   1006篇
  2009年   960篇
  2008年   1063篇
  2007年   909篇
  2006年   859篇
  2005年   713篇
  2004年   540篇
  2003年   420篇
  2002年   394篇
  2001年   304篇
  2000年   281篇
  1999年   291篇
  1998年   160篇
  1997年   154篇
  1996年   139篇
  1995年   147篇
  1994年   138篇
  1993年   95篇
  1992年   149篇
  1991年   125篇
  1990年   108篇
  1989年   75篇
  1988年   81篇
  1987年   64篇
  1986年   64篇
  1985年   76篇
  1984年   39篇
  1983年   28篇
  1982年   33篇
  1981年   17篇
  1979年   13篇
  1978年   22篇
  1977年   15篇
  1974年   15篇
  1971年   9篇
  1968年   11篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Hyoliths were among the earliest biomineralizing metazoans in Palaeozoic marine environments. They have been known for two centuries and widely assigned to lophotrochozoans. However, their origin and relationships with modern lophotrochozoan clades have been a longstanding palaeontological controversy. Here, we provide broad microstructural data from hyolith conchs and opercula from the lower Cambrian Xinji Formation of North China, including two hyolithid genera and four orthothecid genera as well as unidentified opercula. Results show that most hyolith conchs contain a distinct aragonitic lamellar layer that is composed of foliated aragonite, except in the orthothecid New taxon 1 that has a crossed foliated lamellar microstructure. Opercula are mostly composed of foliated aragonite and occasionally foliated calcite. These blade or lath‐like microstructural fabrics coincide well with biomineralization of Cambrian molluscs rather than lophophorates, as exemplified by the Cambrian members of the tommotiid‐brachiopod linage. Accordingly, we propose that hyoliths and molluscs might have inherited their biomineralized skeletons from a non‐mineralized or weakly mineralized common ancestor rather than as a result of convergence. Consequently, from the view of biomineralization, the homologous shell microstructures in Cambrian hyoliths and molluscs strongly strengthen the phylogenetic links between the two groups.  相似文献   
992.
Tian  Peng  Liu  Shengen  Wang  Qingkui  Sun  Tao  Blagodatskaya  Evgenia 《Plant and Soil》2019,437(1-2):439-454
Plant and Soil - Understanding seed-soil dynamics is important for improving plant emergence and growth. The objectives of this study were to develop a Seed-Soil model to simulate the dynamic...  相似文献   
993.
994.
Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well‐watered and water‐stressed) and phosphorus (P) applications (with and without P) on the morphological and physio‐biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over‐production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well‐watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought‐stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn, quantum efficiency of photosystem II (Fv/Fm), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well‐watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.  相似文献   
995.
Barley (Hordeum vulgare L.) is one of the most Aluminum (Al) sensitive cereal species. In this study, the physiological, biochemical, and molecular response of barley seedlings to Al treatment was examined to gain insight into Al response and tolerance mechanisms. The results showed that superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity were inhibited to different degrees following Al exposure. The MDA content also significantly increased with increasing Al concentrations. SRAP results indicated significant differences between Al treatments and controls in terms of SRAP profile, and the genomic template stability (GTS) decreased with increasing Al concentration and duration. These integrative results help to elucidate the underlying mechanisms that the barley response to Al toxicity.  相似文献   
996.
997.
998.
High temperature (HT) is becoming an increasingly serious factor in limiting crop production with global climate change. During hot seasons, owing to prevailing HT, cultivated tomatoes are prone to exhibiting stigma exsertion, which hampers pollination and causes fruit set failure. However, the underlying regulatory mechanisms of the HT‐induced stigma exsertion remain largely unknown. Here, we demonstrate that stigma exsertion induced by HT in cultivated tomato is caused by more seriously shortened stamens than pistils, which is different from the stigma exsertion observed in wild tomato species. Under the HT condition, the different responses of pectin, sugar, expansin, and cyclin cause cell wall remodelling and differentially localized cell division and selective cell enlargement, which further determine the lengths of stamens and pistils. In addition, auxin and jasmonate (JA) are implicated in regulating cell division and cell expansion in stamens and pistils, and exogenous JA instead of auxin treatment can effectively rescue tomato stigma exsertion through regulating the JA/COI1 signalling pathway. Our findings provide a better understanding of stigma exsertions under the HT condition in tomato and uncover a new function of JA in improving plant abiotic stress tolerance.  相似文献   
999.
Liu  Shuai  Li  Su  Fan  Xiao-Yang  Yuan  Guo-Di  Hu  Tao  Shi  Xian-Meng  Huang  Jun-Biao  Pu  Xiao-Yan  Wu  Chuan-Sheng 《Photosynthesis research》2019,141(2):245-257
Photosynthesis Research - Chlorophyll content in lichens is routinely used as an accurate indicator of lichen vigor, interspecific differences, and the effect of site-related environmental...  相似文献   
1000.
Liu  Siqi  Wang  Bo  Li  Xiaojing  Pan  Jingxian  Qian  Xuexue  Yu  Yahui  Xu  Ping  Zhu  Jian  Xu  Xiaofeng 《Plant Cell, Tissue and Organ Culture》2019,137(3):485-494
Plant Cell, Tissue and Organ Culture (PCTOC) - Callus is a remarkable regeneration tissue. The genes correlated with root development can be involved in regulating callus development in higher...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号