首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4056篇
  免费   321篇
  2023年   21篇
  2022年   26篇
  2021年   60篇
  2020年   45篇
  2019年   51篇
  2018年   53篇
  2017年   58篇
  2016年   104篇
  2015年   186篇
  2014年   213篇
  2013年   202篇
  2012年   307篇
  2011年   297篇
  2010年   226篇
  2009年   176篇
  2008年   254篇
  2007年   228篇
  2006年   230篇
  2005年   213篇
  2004年   213篇
  2003年   200篇
  2002年   223篇
  2001年   32篇
  2000年   23篇
  1999年   44篇
  1998年   55篇
  1997年   43篇
  1996年   41篇
  1995年   35篇
  1994年   34篇
  1993年   41篇
  1992年   27篇
  1991年   30篇
  1990年   15篇
  1989年   37篇
  1988年   29篇
  1987年   17篇
  1986年   18篇
  1985年   10篇
  1984年   21篇
  1983年   16篇
  1982年   26篇
  1981年   18篇
  1980年   14篇
  1979年   14篇
  1978年   15篇
  1977年   13篇
  1976年   14篇
  1974年   15篇
  1973年   15篇
排序方式: 共有4377条查询结果,搜索用时 67 毫秒
181.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. An almost identical SMN2 gene is unable to compensate for this deficiency because a single C‐to‐T transition at position +6 in exon‐7 causes skipping of the exon by a mechanism not yet fully elucidated. We observed that the C‐to‐T transition in SMN2 creates a putative binding site for the RNA‐binding protein Sam68. RNA pull‐down assays and UV‐crosslink experiments showed that Sam68 binds to this sequence. In vivo splicing assays showed that Sam68 triggers SMN2 exon‐7 skipping. Moreover, mutations in the Sam68‐binding site of SMN2 or in the RNA‐binding domain of Sam68 completely abrogated its effect on exon‐7 skipping. Retroviral infection of dominant‐negative mutants of Sam68 that interfere with its RNA‐binding activity, or with its binding to the splicing repressor hnRNP A1, enhanced exon‐7 inclusion in endogenous SMN2 and rescued SMN protein expression in fibroblasts of SMA patients. Our results thus indicate that Sam68 is a novel crucial regulator of SMN2 splicing.  相似文献   
182.
Chloroplast gene matK sequence data were used to estimate the phylogeny of 112 species of Crassulaceae sampled from 33 genera and all six recognized subfamilies. Our analyses suggest that five of six subfamilies recognized in the most recent comprehensive classification of the family are not monophyletic. Instead, we recovered a basal split in Crassulaceae between the southern African CRASSULA: clade (Crassuloideae) and the rest of the family (Sedoideae). These results are compatible with recent studies of cpDNA restriction site analyses. Within Sedoideae, four subclades were also recovered: KALANCHOE:, Leucosedum, Acre, and AEONIUM:; evidence also exists for a TELEPHIUM: clade and SEMPERVIVUM: clade. The genus SEDUM: is highly polyphyletic with representatives spread throughout the large Sedoideae clade. Sympetaly and polymerous flowers have arisen multiple times in Crassulaceae and thus are not appropriate characters upon which to base subfamilial limits, as has been done in the past. One floral character, haplostemy, appears to be confined to the well-supported CRASSULA: clade. Our analyses suggest a southern African origin of the family, with subsequent dispersal northward into the Mediterranean region. From there, the family spread to Asia/eastern Europe and northern Europe; two separate lineages of European Crassulaceae subsequently dispersed to North America and underwent substantial diversification. Our analyses also suggest that the original base chromosome number in Crassulaceae is x = 8 and that polyploidy has played an important role in seven clades. Three of these clades are exclusively polyploid (SEMPERVIVUM: clade and two subclades within the KALANCHOE: and AEONIUM: clades), whereas four (Crassula, Telephium, Leucosedum, and ACRE: clades) comprise both diploid and polyploid taxa. Polyploidy is particularly rampant and cytological evolution especially complex in the ACRE: clade.  相似文献   
183.
Summary Numerous musculoskeletal disorders which occur during pregnancy require an effective, nonpharmacological treatment that is known to have no adverse effects on fetal development. The present report describes morphological and histological changes occurring in fetal mouse limbs maintained in a serum-free organ culture system. Limbs maintained in this organ culture system show a progressive rise in limb dimensions including surface area, perimeter, and limb length. Histological analysis of serial cross sections of the limbs revealed a statistically significant increase in histological scores of limb development, thickness of epidermal layer, and amount of collagen deposited in the bone and dermis of limbs by Day 4 of culture. Therefore, this in vitro model combined with contemporary computer image analysis represents an excellent experimental model which can be used readily to examine the effects of therapeutic modalities on the growth and development of many different organ systems.  相似文献   
184.
cDNA clones encoding homologues of expansins, a class of cell wall proteins involved in cell wall modification, were isolated from various stages of growing and ripening fruit of tomato (Lycopersicon esculentum). cDNAs derived from five unique expansin genes were obtained, termed tomato Exp3 to Exp7, in addition to the previously described ripening-specific tomato Exp1 (Rose et al. (1997) Proc Natl Acad Sci USA 94: 5955–5960). Deduced amino acid sequences of tomato Exp1, Exp4 and Exp6 were highly related, whereas Exp3, Exp5 and Exp7 were more divergent. Each of the five expansin genes showed a different and characteristic pattern of mRNA expression. mRNA of Exp3 was present throughout fruit growth and ripening, with highest accumulation in green expanding and maturing fruit, and lower, declining levels during ripening. Exp4 mRNA was present only in green expanding fruit, whereas Exp5 mRNA was present in expanding fruit but had highest levels in full-size maturing green fruit and declined during the early stages of ripening. mRNAs from each of these genes were also detected in leaves, stems and flowers but not in roots. Exp6 and Exp7 mRNAs were present at much lower levels than mRNAs of the other expansin genes, and were detected only in expanding or mature green fruit. The results indicate the presence of a large and complex expansin gene family in tomato, and suggest that while the expression of several expansin genes may contribute to green fruit development, only Exp1 mRNA is present at high levels during fruit ripening.  相似文献   
185.
Cladistic analyses of chloroplast DNA disagree with current classifications by placingPolemoniaceae near sympetalous families with two staminal whorls, includingFouquieriaceae andDiapensiaceae, rather than near sympetalous families with a single staminal whorl, such asHydrophyllaceae andConvolvulaceae. To explore further the affinities ofPolemoniaceae, we sequenced 18S ribosomal DNA for eight genera ofPolemoniaceae and 31 families representing a broadly definedAsteridae. The distribution of variation in these sequences suggest some sites are hypervariable and multiple hits at these sites have obscured much of the hierarchical structure present in the data. Nevertheless, parsimony, least-squares minimum evolution, and maximum likelihood methods all support a monophyleticPolemoniaceae that is placed nearFouquieriaceae, Diapensiaceae and related ericalean families.  相似文献   
186.
In one of the first steps of prokaryotic ribosome assembly, the ribosomal protein S15 binds to a three-way junction in the central domain of the 16S rRNA. Binding causes a conformational change that is required for subsequent binding events. Using a novel fluorescence resonance energy transfer assay with three fluorophores, two on the RNA and one on the S15 protein, small-molecule libraries can be screened for potential inhibitors of this initial step in ribosome assembly. The employment of three fluorophores allows both the conformational change of the RNA and the binding of S15 to be monitored in a single assay.  相似文献   
187.
Acetylation of histones leads to conformational changes of DNA. We have previously shown that the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), induced cell cycle arrest, differentiation, and apoptosis. In addition to their antitumor effects as single agents, HDAC inhibitors may cause conformational changes in the chromatin, rendering the DNA more vulnerable to DNA damaging agents. We examined the effects of SAHA on cell death induced by topo II inhibitors in breast cancer cell lines. Topo II inhibitors stabilize the topo II-DNA complex, resulting in DNA damage. Treatment of cells with SAHA promoted chromatin decondensation associated with increased nuclear concentration and DNA binding of the topo II inhibitor and subsequent potentiation of DNA damage. While SAHA-induced histone hyperacetylation occurred as early as 4 h, chromatin decondensation was most profound at 48 h. SAHA-induced potentiation of topo II inhibitors was sequence-specific. Pre-exposure of cells to SAHA for 48 h was synergistic, whereas shorter pre-exposure periods abrogated synergy and exposure of cells to SAHA after the topo II inhibitor resulted in antagonistic effects. Synergy was not observed in cells with depleted topo II levels. These effects were not limited to specific types of topo II inhibitors. We propose that SAHA significantly potentiates the DNA damage induced by topo II inhibitors; however, synergy is dependent on the sequence of drug administration and the expression of the target. These findings may impact the clinical development of combining HDAC inhibitors with DNA damaging agents.  相似文献   
188.
189.
FSH is critical for normal reproductive function in both males and females. Activin, a member of the TGFbeta family of growth factors, is an important regulator of FSH expression, but little is known about the molecular mechanisms through which it acts. We used transient transfections into the immortalized gonadotrope cell line LbetaT2 to identify three regions (at -973/-962, -167, and -134) of the ovine FSH beta-subunit gene that are required for full activin response. All three regions contain homology to consensus binding sites for Smad proteins, the intracellular mediators of TGFbeta family signaling. Mutation of the distal site reduces activin responsiveness, whereas mutation of either proximal site profoundly disrupts activin regulation of the FSHbeta gene. These sites specifically bind LbetaT2 nuclear proteins in EMSAs, and the -973/-962 site binds Smad4 protein. Interestingly, the protein complex binding to the -134 site contains Smad4 in association with the homeodomain proteins Pbx1 and Prep1. Using glutathione S-transferase interaction assays, we demonstrate that Pbx1 and Prep1 interact with Smads 2 and 3 as well. The two proximal activin response elements are well conserved across species, and Pbx1 and Prep1 proteins bind to the mouse gene in vivo. Furthermore, mutation of either proximal site abrogates activin responsiveness of a mouse FSHbeta reporter gene as well, confirming their functional conservation. Our studies provide a basis for understanding activin regulation of FSHbeta gene expression and identify Pbx1 and Prep1 as Smad partners and novel mediators of activin action.  相似文献   
190.
Little is known about the molecular mechanisms of androgen regulation of the FSHbeta gene; however, studies suggest that it consists of a complex feedback loop that involves multiple mechanisms acting at both the level of the hypothalamus and the pituitary. In the present study, we address androgen regulation of the FSHbeta gene in immortalized gonadotrope cells and investigate the roles of activin and GnRH in androgen action. Using transient transfection assays in the FSHbeta-expressing mouse gonadotrope cell line, LbetaT2, we demonstrate that androgens stimulate expression of an ovine FSHbeta reporter gene in a dose-dependent manner. Mutation of either of two conserved androgen response elements at -245/-231 and -153/-139 within the proximal region of the ovine FSHbeta gene promoter abolishes this stimulation, and androgen receptor binds directly to the -244 ARE in vitro. Androgen induction of the FSHbeta reporter gene is also dependent upon the activin autocrine loop present in the LbetaT2 cells, as well as an activin-response element at -138/-124 of the FSHbeta gene. However, activin regulation of other genes remains unaffected by androgens. In addition, androgens stimulate expression of a mouse GnRH receptor reporter gene, and thus may indirectly augment the response of the FSHbeta gene to GnRH. Taken together, these data demonstrate that, in mouse gonadotropes, androgens act directly on the ovine FSHbeta gene to stimulate expression by a mechanism that is dependent upon activin, as well as acting indirectly, potentially through a second mechanism that may be dependent upon induction of GnRH receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号