首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4066篇
  免费   377篇
  2023年   21篇
  2022年   28篇
  2021年   60篇
  2020年   45篇
  2019年   51篇
  2018年   53篇
  2017年   57篇
  2016年   103篇
  2015年   187篇
  2014年   213篇
  2013年   202篇
  2012年   307篇
  2011年   295篇
  2010年   227篇
  2009年   174篇
  2008年   252篇
  2007年   223篇
  2006年   227篇
  2005年   215篇
  2004年   212篇
  2003年   207篇
  2002年   224篇
  2001年   30篇
  2000年   27篇
  1999年   47篇
  1998年   58篇
  1997年   44篇
  1996年   42篇
  1995年   35篇
  1994年   35篇
  1993年   43篇
  1992年   29篇
  1991年   44篇
  1990年   16篇
  1989年   41篇
  1988年   34篇
  1987年   25篇
  1986年   22篇
  1985年   18篇
  1984年   24篇
  1983年   17篇
  1982年   28篇
  1981年   19篇
  1980年   17篇
  1979年   14篇
  1978年   16篇
  1977年   13篇
  1976年   13篇
  1974年   15篇
  1973年   14篇
排序方式: 共有4443条查询结果,搜索用时 46 毫秒
991.
In eukaryotes, 40S and 60S ribosomal subunits are assembled in the nucleus and exported to the cytoplasm independently of one another. Nuclear export of the 60S requires the adapter protein Nmd3, but no analogous adapter has been identified for the 40S. Ltv1 is a nonessential, nonribosomal protein that is required for 40S subunit biogenesis in yeast. Cells lacking LTV1 grow slowly, are hypersensitive to inhibitors of protein synthesis, and produce about half as many 40S subunits as do wild-type cells. Ltv1 interacts with Crm1, co-sediments in sucrose gradients with 43S/40S subunits, and copurifies with late 43S particles. Here we show that Ltv1 shuttles between nucleus and cytoplasm in a Crm1-dependent manner and that it contains a functional NES that is sufficient to direct the export of an NLS-containing reporter. Small subunit export is reduced in Deltaltv1 mutants, as judged by the altered distribution of the 5'-ITS1 rRNA and the 40S ribosomal protein RpS3. Finally, we show a genetic interaction between LTV1 and YRB2, a gene that encodes a Ran-GTP-, Crm1-binding protein that facilitates the small subunit export. We propose that Ltv1 functions as one of several possible adapter proteins that link the nuclear export machinery to the small subunit.  相似文献   
992.
The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin–ligase complex. Systematic analysis of genetic interactions between dia2Δ and ~4400 viable gene deletion mutants revealed synthetic lethal/synthetic sick interactions with a broad spectrum of DNA replication, recombination, checkpoint, and chromatin-remodeling pathways. dia2Δ strains exhibit constitutive activation of the checkpoint kinase Rad53 and elevated counts of endogenous DNA repair foci and are unable to overcome MMS-induced replicative stress. Notably, dia2Δ strains display a high rate of gross chromosomal rearrangements (GCRs) that involve the rDNA locus and an increase in extrachromosomal rDNA circle (ERC) formation, consistent with an observed enrichment of Dia2 in the nucleolus. These results suggest that Dia2 is essential for stable passage of replication forks through regions of damaged DNA and natural fragile regions, particularly the replication fork barrier (RFB) of rDNA repeat loci. We propose that the SCFDia2 ubiquitin ligase serves to modify or degrade protein substrates that would otherwise impede the replication fork in problematic regions of the genome.  相似文献   
993.
The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.  相似文献   
994.
Macrophage migration inhibitory factor (MIF) was originally identified for its ability to inhibit the random migration of macrophages in vitro. MIF is now recognized as an important mediator in a range of inflammatory disorders. We recently observed that the absence of MIF is associated with a reduction in leukocyte-endothelial cell interactions induced by a range of inflammatory mediators, suggesting that one mechanism whereby MIF acts during inflammatory responses is by promoting leukocyte recruitment. However, it is unknown whether MIF is capable of inducing leukocyte recruitment independently of additional inflammatory stimuli. In this study, we report that MIF is capable of inducing leukocyte adhesion and transmigration in postcapillary venules in vivo. Moreover, leukocytes recruited in response to MIF were predominantly CD68(+) cells of the monocyte/macrophage lineage. Abs against the monocyte-selective chemokine CCL2 (JE/MCP-1) and its receptor CCR2, but not CCL3 and CXCL2, significantly inhibited MIF-induced monocyte adhesion and transmigration. CCL2(-/-) mice displayed a similar reduction in MIF-induced recruitment indicating a critical role of CCL2 in the MIF-induced response. This hypothesis was supported by findings that MIF induced CCL2 release from primary microvascular endothelial cells. These data demonstrate a previously unrecognized function of this pleiotropic cytokine: induction of monocyte migration into tissues. This function may be critical to the ability of MIF to promote diseases such as atherosclerosis and rheumatoid arthritis, in which macrophages are key participants.  相似文献   
995.
Voltage-gated K(+) channels of the Kv7 family underlie the neuronal M current that regulates action potential firing. Suppression of M current increases excitability and its enhancement can silence neurons. We here show that three of five Kv7 channels undergo strong enhancement of their activity by oxidative modification induced by physiological concentrations of hydrogen peroxide. A triple cysteine pocket in the channel S2-S3 linker is critical for this effect. Oxidation-induced enhancement of M current produced a hyperpolarization and a dramatic reduction of action potential firing frequency in rat sympathetic neurons. As hydrogen peroxide is robustly produced during hypoxia-induced oxidative stress, we used an oxygen/glucose deprivation neurodegeneration model that showed neuronal death to be severely accelerated by M current blockade. Such blockade had no effect on survival of normoxic neurons. This work describes a novel pathway of M-channel regulation and suggests a role for M channels in protective neuronal silencing during oxidative stress.  相似文献   
996.
997.
Generation and characterization of B7-H4/B7S1/B7x-deficient mice   总被引:3,自引:0,他引:3       下载免费PDF全文
Members of the B7 family of cosignaling molecules regulate T-cell proliferation and effector functions by engaging cognate receptors on T cells. In vitro and in vivo blockade experiments indicated that B7-H4 (also known as B7S1 or B7x) inhibits proliferation, cytokine production, and cytotoxicity of T cells. B7-H4 binds to an unknown receptor(s) that is expressed on activated T cells. However, whether B7-H4 plays nonredundant immune regulatory roles in vivo has not been tested. We generated B7-H4-deficient mice to investigate the roles of B7-H4 during various immune reactions. Consistent with its inhibitory function in vitro, B7-H4-deficient mice mounted mildly augmented T-helper 1 (Th1) responses and displayed slightly lowered parasite burdens upon Leishmania major infection compared to the wild-type mice. However, the lack of B7-H4 did not affect hypersensitive inflammatory responses in the airway or skin that are induced by either Th1 or Th2 cells. Likewise, B7-H4-deficient mice developed normal cytotoxic T-lymphocyte reactions against viral infection. Thus, B7-H4 plays a negative regulatory role in vivo but the impact of B7-H4 deficiency is minimal. These results suggest that B7-H4 is one of multiple negative cosignaling molecules that collectively provide a fine-tuning mechanism for T-cell-mediated immune responses.  相似文献   
998.
Under specific conditions Penicillium simplicissimum excretes large amounts of organic acids, mainly citrate. As the energetic status of the hyphae might play a role in that respect, we developed a method for the determination of adenine (adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate) and pyridine (nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide (NADH)) nucleotides in hyphae of P. simplicissimum. An optimum separation of the five compounds in less than 15 min was possible on a C-8 column, utilizing 50 mM aqueous triethylamine-buffer (pH 6.5) and acetonitrile as mobile phase; detection was performed at 254 nm. With the exception of NADH, which could not be determined accurately due to stability problems, the method was sensitive (LOD < or = 0.7 ng on-column), repeatable (sigma(rel) < or = 4.4%), accurate (recovery rates between 97.9 and 104.9%), and precise (intraday variation < or = 9.4%, interday variation < or = 6.2 %). For an optimum extraction of the nucleotides the chemostat samples were directly placed into hot (90 degrees C) 50% ethanol, and shaken for 10 min, followed by evaporation of the solvent and a solid phase extraction cleanup of the redissolved aqueous samples. With this method the nucleotide concentrations in hyphae from a glucose-limited chemostat culture and the respective energy charge were determined. Additionally, the effect of the time lag between sampling and extraction and the effect of a glucose pulse on nucleotide concentrations were determined.  相似文献   
999.
Clapp CH  Strulson M  Rodriguez PC  Lo R  Novak MJ 《Biochemistry》2006,45(51):15884-15892
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of polyunsaturated fatty acids to produce conjugated diene hydroperoxides. Previous work from our laboratories has demonstrated that SBLO-1 will also catalyze the oxygenation of monounsaturated acids (Clapp, C. H., Senchak, S. E., Stover, T. J., Potter, T. C., Findeis, P. M., and Novak, M. J. (2001) Soybean Lipoxygenase-Mediated Oxygenation of Monounsaturated Fatty Acids to Enones, J. Am. Chem. Soc. 123, 747-748). Interestingly, the products are alpha,beta-unsaturated ketones rather than the expected allylic hydroperoxides. In the present work, we provide evidence that the monoolefin substrates are initially converted to allylic hydroperoxides, which are subsequently converted to the enone products. The hydroperoxide intermediates can be trapped by reduction to the corresponding allylic alcohols with glutathione peroxidase plus glutathione or with SnCl2. Under some conditions, the hydroperoxide intermediates accumulate and can be detected by HPLC and peroxide assays. Kinetics measurements at low concentrations of [1-14C]-9(Z)-octadecenoic acid indicate that oxygenation of this substrate at 25 degrees C, pH 9.0 occurs with kcat/Km = 1.6 (+/-0.1) x 10(2) M-1 s-1, which is about 105 lower than kcat/Km for oxygenation of 9(Z),12(Z)-octadecadienoic acid (linoleic acid). Comparison of the activities of 9(Z)-octadecenoic acid and 12(Z)-octadecenoic acid implies that the two double bonds of linoleic acid contribute almost equally to the C-H bond-breaking step in the normal lipoxygenase reaction. The results are consistent with the notion that SBLO-1 functionalizes substrates by a radical mechanism.  相似文献   
1000.
OBJECTIVES: To define the link between the deletion of gene encoding for metalloproteinase 9 and resistance artery reactivity, we studied in vitro smooth muscle and endothelial cell function in response to pressure, shear stress, and pharmacological agents. BACKGROUND: Matrix metalloproteinases play a crucial role in the regulation of extracellular matrix turnover and structural artery wall remodeling. METHODS: Resistance arteries were isolated from mice lacking gene encoding for MMP-9 (KO) and their control (WT). Hemodynamic, pharmacology approaches, and Western blot analysis were used in this study. RESULTS: The measurement of blood pressure in vivo was similar in KO and WT mice. Pressure-induced myogenic tone, contractions to angiotensin-II and phenylephrine were similar in both groups. The inhibition of MMP2/9 ((2R)-2-[(4-biphenylylsulfonyl) amino]-3-phenylpropionic acid) significantly decreased myogenic tone in WT and had no effect in KO mice. Relaxation endothelium-dependent (flow-induced- dilation 41.3+/-0.6 vs. 21+/-1.6 at 10 microl/min in KO and WT mice, respectively, P<0.05) and eNOS expression were increased in KO compared to WT mice. The inhibition of eNOS with L-NAME significantly decreased endothelium response to shear stress, which was more pronounced in KO mice resistance arteries (-26.83+/-2.5 vs. -15.84+/-2.3 at 10 microl/min in KO and WT, respectively, P<0.05). However, the relaxation to exogenous nitric oxide-donor was similar in both groups. CONCLUSION: Our study provides evidence of a selective effect of MMP-9 on endothelium function. Thus, MMP-9 gene deletion specifically increased resistance artery dilation endothelium-dependent and eNOS expression. Based on our results, MMP-9 could be a potential therapeutic target in cardiovascular disease associated with resistance arteries dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号