首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8086篇
  免费   771篇
  国内免费   1篇
  2022年   45篇
  2021年   105篇
  2020年   64篇
  2019年   77篇
  2018年   87篇
  2017年   93篇
  2016年   161篇
  2015年   274篇
  2014年   338篇
  2013年   350篇
  2012年   472篇
  2011年   482篇
  2010年   341篇
  2009年   287篇
  2008年   403篇
  2007年   419篇
  2006年   392篇
  2005年   346篇
  2004年   340篇
  2003年   344篇
  2002年   352篇
  2001年   185篇
  2000年   158篇
  1999年   168篇
  1998年   126篇
  1997年   97篇
  1996年   98篇
  1995年   97篇
  1994年   85篇
  1993年   99篇
  1992年   129篇
  1991年   100篇
  1990年   126篇
  1989年   108篇
  1988年   93篇
  1987年   92篇
  1986年   81篇
  1985年   66篇
  1984年   62篇
  1983年   66篇
  1982年   70篇
  1981年   61篇
  1980年   59篇
  1979年   65篇
  1977年   52篇
  1976年   58篇
  1975年   40篇
  1974年   49篇
  1973年   41篇
  1971年   41篇
排序方式: 共有8858条查询结果,搜索用时 15 毫秒
951.
The assembly of molecular motor proteins into multi-unit protein complexes plays an important role in determining the intracellular transport and trafficking properties of many subcellular commodities. Yet, it is not known how proteins within these complexes interact and function collectively. Considering the established ties between motor transport and diseases, it has become increasingly important to investigate the functional properties of these essential transport ‘motifs’. Doing so requires that the composite motile and force-generating properties of multi-unit motor assemblies are characterized. However, such analyses are typically confounded by a lack of understanding of the links between the structural and mechanical properties of many motor complexes. New experimental challenges also emerge when one examines motor cooperation. Distributions in the mechanical microstates available to motor ensembles must be examined in order to fully understand the transport behavior of multi-motor complexes. Furthermore, mechanisms by which motors communicate must be explored to determine whether motor groups can move cargo together in a truly cooperative fashion. Resolving these issues requires the development of experimental methods that allow the dynamics of complex systems of transport proteins to be monitored with the same precision available to single-molecule biophysical assays. Herein, we discuss key fundamental principles governing the function of motor complexes and their relation to mechanisms that regulate intracellular cargo transport. We also outline new experimental strategies to resolve these essential features of intracellular transport.  相似文献   
952.
Database analyses identified 4933434I20Rik as a glycosyltransferase-like gene expressed mainly in testicular germ cells and regulated during spermatogenesis. Expression of a membrane-bound form of the protein resulted in a marked and specific reduction in N-acetylglucosaminyltransferase I (GlcNAcT-I) activity and complex and hybrid N-glycan synthesis. Thus, the novel activity was termed GlcNAcT-I inhibitory protein (GnT1IP). Membrane-bound GnT1IP localizes to the ER, the ER-Golgi intermediate compartment (ERGIC), and the cis-Golgi. Coexpression of membrane-anchored GnT1IP with GlcNAcT-I causes association of the two proteins, inactivation of GlcNAcT-I, and mislocalization of GlcNAcT-I from the medial-Golgi to earlier compartments. Therefore, GnT1IP is a regulator of GlcNAcT-I and complex and hybrid N-glycan production. Importantly, the formation of high mannose N-glycans resulting from inhibition of GlcNAcT-I by GnT1IP markedly increases the adhesion of CHO cells to TM4 Sertoli cells. Testicular germ cells might use GnT1IP to induce the expression of high mannose N-glycans on glycoproteins, thereby facilitating Sertoli–germ cell attachment at a particular stage of spermatogenesis.  相似文献   
953.
Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chondroitin sulfate A in the intervillous space. Although interclonal variation of the var2csa gene is lower than that among var genes in general, VAR2CSA-specific Abs appear to target mainly polymorphic epitopes. This has raised doubts about the feasibility of VAR2CSA-based vaccines. We used eight human monoclonal IgG Abs from affinity-matured memory B cells of P. falciparum-exposed women to study interclonal variation and functional importance of Ab epitopes among placental and peripheral parasites from East and West Africa. Most placental P. falciparum isolates were labeled by several mAbs, whereas peripheral isolates from children were essentially nonreactive. The mAb reactivity of peripheral isolates from pregnant women indicated that some were placental, whereas others had alternative sequestration foci. Most of the mAbs were comparable in their reactivity with bound infected erythrocytes (IEs) and recombinant VAR2CSA and interfered with IE and/or VAR2CSA binding to chondroitin sulfate A. Pair-wise mAb combinations were more inhibitory than single mAbs, and all of the mAbs together was the most efficient combination. Each mAb could opsonize IEs for phagocytosis, and a combination of the eight mAbs caused phagocytosis similar to that of plasma IgG-opsonized IEs. We conclude that functionally important Ab epitopes are shared by the majority of polymorphic VAR2CSA variants, which supports the feasibility of VAR2CSA-based vaccines against placental malaria.  相似文献   
954.
Rhodoquinone (RQ) is an important cofactor used in the anaerobic energy metabolism of Rhodospirillum rubrum. RQ is structurally similar to ubiquinone (coenzyme Q or Q), a polyprenylated benzoquinone used in the aerobic respiratory chain. RQ is also found in several eukaryotic species that utilize a fumarate reductase pathway for anaerobic respiration, an important example being the parasitic helminths. RQ is not found in humans or other mammals, and therefore inhibition of its biosynthesis may provide a parasite-specific drug target. In this report, we describe several in vivo feeding experiments with R. rubrum used for the identification of RQ biosynthetic intermediates. Cultures of R. rubrum were grown in the presence of synthetic analogs of ubiquinone and the known Q biosynthetic precursors demethylubiquinone, demethoxyubiquinone, and demethyldemethoxyubiquinone, and assays were monitored for the formation of RQ3. Data from time course experiments and S-adenosyl-l-methionine-dependent O-methyltransferase inhibition studies are discussed. Based on the results presented, we have demonstrated that Q is a required intermediate for the biosynthesis of RQ in R. rubrum.Rhodospirillum rubrum is a well-characterized and metabolically diverse member of the family of purple nonsulfur bacteria (29, 61). R. rubrum is typically found in aquatic environments and can adapt to a variety of growth conditions by using photosynthesis, respiration, or fermentation pathways (28, 70). In the light, R. rubrum exhibits photoheterotrophic growth using organic substrates or photoautotrophic growth using CO2 and H2 (15, 70). In the dark, R. rubrum can utilize either aerobic respiration (70, 73) or anaerobic respiration with a fumarate reduction pathway or with nonfermentable substrates in the presence of oxidants such as dimethyl sulfoxide (DMSO) or trimethylamine oxide (15, 58, 73). R. rubrum can also grow anaerobically in the dark by fermentation of sugars in the presence of bicarbonate (58). The focus of this work was the biosynthesis of quinones used by R. rubrum for aerobic and anaerobic respiration.Rhodoquinone (RQ; compound 1 in Fig. Fig.1)1) is an aminoquinone structurally similar to ubiquinone (coenzyme Q or Q [compound 2]) (44); however, the two differ considerably in redox potential (that of RQ is −63 mV, and that of Q is +100 mV) (2). Both RQ and Q have a fully substituted benzoquinone ring and a polyisoprenoid side chain that varies in length (depending on the species; see Fig. Fig.11 for examples). The only difference between the structures is that RQ has an amino substituent (NH2) instead of a methoxy substituent (OCH3) on the quinone ring. While Q is a ubiquitous lipid component involved in aerobic respiratory electron transport (9, 36, 60), RQ functions in anaerobic respiration in R. rubrum (19) and in several other phototrophic purple bacteria (21, 22, 41) and is also present in a few aerobic chemotrophic bacteria, including Brachymonas denitrificans and Zoogloea ramigera (23). In these varied species of bacteria, RQ has been proposed to function in fumarate reduction to maintain NAD+/NADH redox balance, either during photosynthetic anaerobic metabolism (12, 15-18, 64) or in chemotrophic metabolism when the availability of oxygen as a terminal oxidant is limiting (23). Another recent finding is that RQH2 is capable of inducing Q-cycle bypass reactions in the cytochrome bc1 complex in Saccharomyces cerevisiae, resulting in superoxide formation (7). If RQ/RQH2 coexists in the cytoplasmic membrane with Q/QH2 in R. rubrum, it might serve as both a substrate for and an inhibitor of the bc1 complex (47).Open in a separate windowFIG. 1.Proposed pathways for RQ biosynthesis. The number of isoprene units (n) varies by species (in S. cerevisiae, n = 6; in E. coli, n = 8; in C. elegans, n = 9; in helminth parasites, n = 9 or 10; in R. rubrum, n = 10; in humans, n = 10). RQ is not found in S. cerevisiae, E. coli, or humans. Known Coq (from S. cerevisiae) and Ubi (from E. coli) gene products required for the biosynthesis of ubiquinone (Q, compound 2) are labeled. A polyisoprenyl diphosphate (compound 5) is assembled from dimethylallyl disphosphate (compound 3) and isopentyl diphosphate (compound 4). Coupling of compound 5 with p-hydroxybenzoic acid (compound 6) yields 3-polyprenyl-4-hydroxybenzoic acid (compound 7). The next three steps differ between S. cerevisiae and E. coli. However, they merge at the common intermediate (compound 8), which is oxidized to demethyldemethoxyubiquinone (DDMQn, compound 9). RQ (compound 1) has been proposed to arise from compound 9, demethoxyubiquinone (DMQn; compound 10), demethylubiquinone (DMeQn; compound 11), or compound 2 (by pathway A, B, C, or D). Results presented in this work support pathway D as the favored route for RQ biosynthesis in R. rubrum.RQ is also found in the mitochondrial membrane of eukaryotic species capable of fumarate reduction, such as the flagellate Euglena gracilis (25, 53), the free-living nematode Caenorhabditis elegans (62), and the parasitic helminths (65, 66, 68, 72). Similar to R. rubrum, these species can adapt their metabolism to both aerobic and anaerobic conditions throughout their life cycle. For example, most adult parasitic species (e.g., Ascaris suum, Fasciola hepatica, and Haemonchus contortus) rely heavily on fumarate reduction for their energy generation while inside a host organism, where the oxygen tension is very low (30, 65, 72). Under these conditions, the biosynthesis of RQ is upregulated; however, during free-living stages of their life cycle, the helminth parasites use primarily aerobic respiration, which requires Q (30, 65, 72). The anaerobic energy metabolism of the helminthes has been reviewed (63, 67). Humans and other mammalian hosts use Q for aerobic energy metabolism but do not produce or require RQ; therefore, selective inhibition of RQ biosynthesis may lead to highly specific antihelminthic drugs that do not have a toxic effect on the host (35, 48).R. rubrum is an excellent facultative model system for the study of RQ biosynthesis. The complete genome of R. rubrum has recently been sequenced by the Department of Energy Joint Genome Institute, finished by the Los Alamos Finishing Group, and further validated by optical mapping (57). The 16S rRNA sequence of R. rubrum is highly homologous to cognate eukaryotic mitochondrial sequences (46). Due to the similarities in structure, the biosynthetic pathways of RQ and Q have been proposed to diverge from a common precursor (67). Proposed pathways for RQ biosynthesis (A to D), in conjunction with the known steps in Q biosynthesis, are outlined in Fig. Fig.11 (31, 34, 60). Parson and Rudney previously showed that when R. rubrum was grown anaerobically in the light in the presence of [U-14C]p-hydroxybenzoate, 14C was incorporated into both Q10 and RQ10 (50). In their growth experiments, the specific activity of Q10 was measured at its maximal value 15 h after inoculation and then began to decrease. However, the specific activity of RQ10 continued to increase for 40 h before declining. These results suggested that Q10 was a biosynthetic precursor of RQ10, although this was not directly demonstrated using radiolabeled Q10; hence, the possibility remained that the labeled RQ10 was derived from another radiolabeled lipid species. We have done this feeding experiment with a synthetic analog of Q where n = 3 (Q3) and monitored for the production of RQ3. The synthesis and use of farnesylated quinone and aromatic intermediates for characterization of the Q biosynthetic pathway in S. cerevisiae and Escherichia coli has been well documented (4, 5, 38, 52, 59). The other proposed precursors of RQ shown in Fig. Fig.11 were also fed to R. rubrum, and the lipid extracts from these assays were analyzed for the presence of RQ3, i.e., demethyldemethoxyubiquinone-3 (DDMQ3; compound 9), demethoxyubiquinone-3 (DMQ3; compound 10), and demethylubiquinone-3 (DMeQ3; compound 11).In S. cerevisiae and E. coli, the last O-methylation step in Q biosynthesis is catalyzed by the S-adenosyl-l-methionine (SAM)-dependent methyltransferases Coq3 and UbiG, respectively (26, 52); this final methylation step converts DMeQ to Q. Using the NCBI Basic Local Alignment Search Tool, an O-methyltransferase (GeneID no. 3834724 Rru_A0742) that had 41% and 59% sequence identity with Coq3 and UbiG, respectively, was identified in R. rubrum. S-Adenosyl-l-homocysteine (SAH) is a well-known inhibitor of SAM-dependent methyltransferases (13, 24). Because SAH is the transmethylation by-product of SAM-dependent methyltransferases, it is not readily taken up by cells and must be generated in vivo (24). SAH can be produced in vivo from S-adenosine and l-homocysteine thiolactone by endogenous SAH hydrolase (SAHH) (37, 71). A search of the R. rubrum genome also confirmed the presence of a gene encoding SAHH (GeneID no. 3836896 Rru_A3444). It was proposed that if DMeQ is the immediate precursor of RQ, then SAH inhibition of the methyltransferase required for Q biosynthesis should have little effect on RQ production. Conversely, if Q is required for RQ synthesis, then inhibition of Q biosynthesis should have a significant effect on RQ production. Assays were designed to quantify the levels of RQ3 produced from DMeQ3 and Q3 in R. rubrum cultures at various concentrations of SAH.  相似文献   
955.
We previously reported results of a molecular epidemiological study of female and male 1,3-butadiene (BD) exposed Czech workers showing that females appeared to absorb or metabolize less BD per unit exposure concentration than did males, based on metabolite concentrations in urine (Chem. Biol. Interact. 166 (2007) 63–77). However, that unexpected observation could not be verified at the time because the only additional BD metabolite measurement attempted was for 1,2,3,4-diepoxybutane (DEB) as reflected in specific N,N[2,3-dihydroxy-1,4-butyl]valine (pyr-Val) hemoglobin adduct concentrations, which were not quantifiable in any subject with the method then employed. Neither somatic gene mutations nor chromosome aberrations were associated with BD exposure levels in that study, consistent with findings in an earlier Czech study of males only. We have since measured production and accumulation of the 1,2-dihydroxy-3,4-epoxybutane (EBD) metabolite as reflected in N-[2,3,4-trihydroxy-butyl]valine (THB-Val) hemoglobin adduct concentrations. The mean THB-Val concentration was significantly higher in exposed males than in control males (922.3 pmol/g and 275.5 pmol/g, respectively), but exposed and control females did not differ significantly (224.5 pmol/g and 181.1 pmol/g, respectively). In both the control and exposed groups mean THB-Val concentrations were significantly higher for males than females. THB-Val concentrations were significantly correlated with mean 8-h TWA exposures for both males and females, but the rate of increase with increasing BD exposure was significantly lower for females. THB-Val concentrations also increased with increasing urine M2 metabolite [isomeric mixture of 1-hydroxy-2-{N-actylcysteinyl}-3-butene and 2-hydroxy-1-{N-acetylcysteinyl}-3-butene] concentrations in both sexes but the rate of increase was also lower in females than in males. There were no significant correlations between THB-Val concentrations and either somatic gene mutations or chromosome aberrations in either males or females. These results using another biomarker to measure a second metabolite of BD support the original conclusion that females absorb or metabolize less BD than males per unit exposure and indicate that the size of the difference increases with exposure. This observation in humans differs from findings in rodents where at prolonged exposures to high BD levels the females form higher amounts of hemoglobin adducts than do males, a difference that disappears at shorter duration lower exposure levels, while female susceptibility to BD induced mutations and tumorgenesis in rodents appears to persist at all BD exposure levels.  相似文献   
956.
Phase diagrams of solutions consisting of cryoprotective agents (CPA) are very useful in cryobiology research. Those diagrams depict the points of solution concentrations at corresponding temperatures: one of essential inputs that can be utilized to compute the volume response of cell under freezing process. However, generating such plots is costly and time-consuming. A direct method is proposed in this study to determine the solution concentration of unfrozen parts at multiple sub-zero temperatures. Measurements of binary solutions, composed of water and sodium chloride, were performed and compared with published data. Ternary solutions, consisting of water, sodium chloride and dimethyl sulfoxide, were also measured. The uniqueness and advantage achieved through the usage of this method are demonstrated when phase diagrams of complex cryopreservation solutions (CryoStor solutions including CryoStor Base and CryoStor 10) are generated. The temperature range where the method is utilized is either limited by the osmometry (0-3200 mmol/kg) or by the availability of liquid samples at sub-freezing temperatures. Modified methods will be required to address the limitation of osmolality measurements and the availability of sub-freezing liquid samples at lower temperatures.  相似文献   
957.
The definitive endoderm forms during gastrulation and is rapidly transformed into the gut tube which is divided along the anterior-posterior axis into the foregut, midgut, and hindgut. Lineage tracing and genetic analysis have examined the origin of the definitive endoderm during gastrulation and demonstrated that the majority of definitive endoderm arises at the anterior end of the primitive streak (APS). Foxh1 and Foxa2 have been shown to play a role in specification of the APS and definitive endoderm. However, prior studies have focused on the role of these factors in specification of foregut definitive endoderm, while their role in the specification of midgut and hindgut definitive endoderm is less understood. Furthermore, previous analyses of these mutants have utilized definitive endoderm markers that are restricted to the anterior endoderm, expressed in extraembryonic endoderm, or present in other germ layers. Here, we characterized the expression of several novel definitive and visceral endoderm markers in Foxh1 and Foxa2 null embryos. In accordance with previous studies, we observed a deficiency of foregut definitive endoderm resulting in incorporation of visceral endoderm into the foregut. Interestingly, this analysis revealed that formation of midgut and hindgut definitive endoderm is unaffected by loss of Foxh1 or Foxa2. This finding represents a significant insight into specification and regionalization of mouse definitive endoderm.  相似文献   
958.
Polyploidy is a major feature of angiosperm evolution and diversification. Most polyploid species have formed multiple times, yet we know little about the genetic consequences of recurrent formations. Among the clearest examples of recurrent polyploidy are Tragopogon mirus and T. miscellus (Asteraceae), each of which has formed repeatedly in the last ~80 years from known diploid progenitors in western North America. Here, we apply progenitor‐specific microsatellite markers to examine the genetic contributions to each tetraploid species and to assess gene flow among populations of independent formation. These data provide fine‐scale resolution of independent origins for both polyploid species. Importantly, multiple origins have resulted in considerable genetic variation within both polyploid species; however, the patterns of variation detected in the polyploids contrast with those observed in extant populations of the diploid progenitors. The genotypes detected in the two polyploid species appear to represent a snapshot of historical population structure in the diploid progenitors, rather than modern diploid genotypes. Our data also indicate a lack of gene flow among polyploid plants of independent origin, even when they co‐occur, suggesting potential reproductive barriers among separate lineages in both polyploid species.  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号