首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4728篇
  免费   369篇
  5097篇
  2023年   26篇
  2022年   43篇
  2021年   80篇
  2020年   53篇
  2019年   63篇
  2018年   73篇
  2017年   80篇
  2016年   118篇
  2015年   221篇
  2014年   246篇
  2013年   255篇
  2012年   360篇
  2011年   340篇
  2010年   252篇
  2009年   196篇
  2008年   278篇
  2007年   258篇
  2006年   253篇
  2005年   240篇
  2004年   241篇
  2003年   222篇
  2002年   234篇
  2001年   50篇
  2000年   41篇
  1999年   58篇
  1998年   64篇
  1997年   45篇
  1996年   47篇
  1995年   35篇
  1994年   36篇
  1993年   44篇
  1992年   36篇
  1991年   37篇
  1990年   22篇
  1989年   45篇
  1988年   33篇
  1987年   20篇
  1986年   25篇
  1985年   16篇
  1984年   25篇
  1983年   21篇
  1982年   31篇
  1981年   21篇
  1980年   19篇
  1979年   16篇
  1978年   20篇
  1977年   14篇
  1976年   15篇
  1974年   20篇
  1973年   15篇
排序方式: 共有5097条查询结果,搜索用时 15 毫秒
31.
The purpose of this study was to assess variation in male and female reproductive success among the three morphs of the tristylous plant, Lythrum salicaria. Fluorescent dyes were used as pollen analogs to determine whether morphs differ in their abilities to donate and receive pollen, and actual and potential seed set was measured with a hand pollination experiment. Dye transfer among morphs was highly asymmetric, with more frequent transfer from the short-styled morph to the long- and mid-styled morphs. This suggests that shorts are performing better at pollen donation and longs and mids are performing better at pollen receipt. All flowers on 95 plants were hand pollinated to test whether female reproductive success is more pollen-limited in the short-styled morph than in other morphs. Hand-pollinated short-styled plants had significantly higher total seed mass and more seeds per capsule than short controls, whereas hand pollination failed to increase seed set in long and mid morphs. As predicted, short-styled morphs showed significant pollen limitation, whereas seed set in long- and midstyled morphs was not pollen-limited. Thus, in Lythrum salicaria asymmetrical pollen flow generates morph-specific differences in male and female fitness.  相似文献   
32.
Draba (Brassicaceae) is well known for its taxonomic complexity in arctic and alpine floras, and the polyploids in particular present vexing taxonomic problems. It has been suggested that polyploids in Draba may have formed recurrently from different populations of the parental species (polytopy), and it is also possible that a given taxonomic species may actually comprise several polyploid races, each originating from different progenitor species (polyphyly). To unravel the taxonomic complexity of polyploid Draba in the Nordic area, we investigated three of the most morphologically variable species and their possible progenitors using enzyme electrophoresis and restriction site analysis of chloroplast DNA (cpDNA) and nuclear ribosomal RNA genes (rDNA): D. norvegica (6x), D. lactea (6x), and D. corymbosa (16x). Electrophoretic analyses of progeny showed high levels of fixed heterozygosity in all three polyploids, demonstrating that all are genetic alloploids. Electrophoretic and rDNA data indicate that polytopic and/or polyphyletic origins have contributed to the complexity of these polyploids. However, a lack of cpDNA variation among the species limited the usefulness of this molecule for analysis of polyploid origins. The considerable electrophoretic variation observed in D. norvegica necessitates a minimum of three and probably 13 independent origins. Electrophoretic and rDNA data suggest that D. lactea and D. corymbosa are polyphyletic polyploids. Crossing data also support that D. corymbosa is polyphyletic. Given the widespread geographic distributions of these species and their possible progenitors, and that the populations analyzed represent only a small fraction of their geographic distributions, it is likely that these species have formed numerous times in different areas. As more molecular analyses of polyploids are completed, the data continue to suggest that multiple origins of polyploids are the rule rather than the exception.  相似文献   
33.
Although there is an extensive literature on the genetic attributes of allopolyploids, very little information is available regarding the genetic consequences of autopolyploidy in natural populations. We therefore addressed the major predicted genetic consequences of autopolyploidy using diploid and tetraploid populations of Tolmiea menziesii. Individual autotetraploid plants frequently maintain three or four alleles at single loci: 39% of the 678 tetraploid plants exhibited three or four alleles for at least one locus. Heterozygosity was also significantly higher in autotetraploid populations than in diploid populations: H° = 0.070 and 0.237 in diploid and tetraploid Tolmiea, respectively. Most of the genetic diversity in T. menziesii is maintained within populations (ratio of gene diversity within populations to mean total genetic diversity = 0.636). The total genetic diversity due to differentiation between the two cytotypes is only 0.055. Such a low degree of differentiation between cytotypes would be expected between a diploid and its autotetraploid derivative. Most diploid and all tetraploid populations examined are in genetic equilibrium. Diploid and tetraploid Tolmiea share three or four alleles at six of eight polymorphic loci. This suggests that either autotetraploid Tolmiea was formed via crossing of genetically different diploids (perhaps via a triploid intermediate) or autopolyploidy occurred more than once in separate individual plants, followed by later crossing of autotetraploids.  相似文献   
34.
35.
Ventilation and metabolism among rat strains   总被引:3,自引:0,他引:3  
Strohl, Kingman P., Agnes J. Thomas, Pamela St. Jean, EvelynH. Schlenker, Richard J. Koletsky, and Nicholas J. Schork. Ventilation and metabolism among rat strains. J. Appl. Physiol. 82(1): 317-323, 1997.We examinedventilation and metabolism in four rat strains with variation in traitsfor body weight and/or blood pressure regulation.Sprague-Dawley [SD; 8 males (M), 8 females (F)], BrownNorway (BN; 10 M, 11 F), and Zucker (Z; 11 M, 12 F) rats were comparedwith Koletsky (K; 11 M, 11 F) rats. With the use of noninvasiveplethysmography, frequency, tidal volume, minute ventilation(E),O2 consumption, andCO2 production were derived atrest during normoxia (room air) and during the 5th minute of exposureto each of the following: hyperoxia (100% O2), hypoxia (10%O2-balanceN2), and hypercapnia (7%CO2-balance O2). Statistical methods probedfor strain and sex effects, with covariant analysis by body weight,length, and body mass. During resting breathing, strain effects werefound with respect to both frequency (BN, Z > K, SD) and tidal volume(SD > BN, Z) but not to E. Sexinfluenced frequency (F > M) alone. Z rats had higher values forO2 consumption,CO2 production, and respiratoryquotient than the other three strains, with no independent effect bysex. During hyperoxia, frequency was greater in BN and Z than in SD orK rats; SD rats had a larger tidal volume than BN or Z rats; Z rats hada greater E than K rats; and M had alarger tidal volume than F. Strain differences persisted duringhypercapnia, with Z rats exhibiting the highest frequency andE values. During hypoxic exposure,strain effects were found to influenceE (SD > K, Z), frequency (BN > K), and tidal volume (SD > BN, K, Z). Body mass was only amodest predictor of E during normoxia, of both E and tidal volume withhypoxia, hypercapnia, or hyperoxia, and of frequency duringhypercapnia. We conclude that strain of rats, more than their body massor sex, has major and different influences on metabolism, the patternand level of ventilation during air breathing, and ventilation duringacute exposure to hypercapnia or hypoxia.

  相似文献   
36.
Genetic diversity in the introduced diploids Tragopogon dubius, T. porrifolius, and T. pratensis and their neoallotetraploid derivatives T. mirus and T. miscellus was estimated to assess the numbers of recurrent, independent origins of the two tetraploid species in the Palouse region of eastern Washington and adjacent Idaho. These tetraploid species arose in this region, probably within the past 50–60 yr, and provide one of the best models for the study of polyploidy in plants. The parental species of both T. mirus and T. miscellus have been well documented, and each tetraploid species has apparently formed multiple times. However, a recent survey of the distributions of these allotetraploids revealed that both tetraploid species have expanded their ranges considerably during the past 50 yr, and several new populations of each species were discovered. Therefore, to evaluate the possibility that these recently discovered populations are of recent independent origin, a broad analysis of genetic diversity in T. mirus, T. miscellus, and their diploid progenitors was conducted. Analyses of allozymic and DNA restriction site variation in all known populations of T. mirus and T. miscellus in the Palouse and several populations of each parental diploid species revealed several distinct genotypes in each tetraploid species. Four isozymic multilocus genotypes were observed in T. mirus, and seven were detected in T. miscellus. Tragopogon mirus possesses a single chloroplast genome, that of T. porrifolius, and two distinct repeat types of the 18S-26S ribosomal RNA genes. Populations of T. miscellus from Pullman, Washington, have the chloroplast genome of T. dubius; all other populations of T. miscellus have the chloroplast DNA of T. pratensis. All populations of T. miscellus combine the ribosomal RNA repeat types of T. dubius and T. pratensis, as demonstrated previously. When all current and previously published data are considered, both T. mirus and T. miscellus appear to have formed numerous times even within the small geographic confines of the Palouse, with estimates of five to nine and two to 21 independent origins, respectively. Such recurrent polyploidization appears to characterize most polyploid plant species investigated to date (although this number is small) and may contribute to the genetic diversity and ultimate success of polyploid species.  相似文献   
37.
38.
N2O Evolution by Green Algae   总被引:1,自引:1,他引:0       下载免费PDF全文
Evidence is presented here that axenic cultures of Chlorella, Scenedesmus, Coelastrum, and Chlorococcum spp. evolve N2O when grown on NO2, showing that the Chlorophyceae are a source of N2O in aquatic systems.  相似文献   
39.
Ammonia oxidation, as measured by nitrite production, was inhibited by 2-chloro-6-trichloromethyl-pyridine (nitrapyrin, N-serve) in the methane-oxidizing bacterium,Methylosinus trichosporium OB3b, and the autotrophic nitrifying organisms,Nitrosococcus oceanus andNitrosomonas marina. 6-Chloropicolinic acid, a hydrolysis product of nitrapyrin, was ineffective as an inhibitor of ammonia oxidation by either the methanotroph or the autotrophs. Picolinic acid (2-carboxy-pyridine), in contrast, inhibited nitrification by the methane-oxidizing bacterium but not by the autotrophic cultures. Picolinic acid may provide a means for differentiating ammonia oxidation attributable to methanotrophs from that resulting from autotrophs in environmental studies.  相似文献   
40.
From the unripe fruits of Sapium indicum, three aliphatic esters of the tigliane nucleus were isolated. These compounds were derivatives of 4-deoxyphorbol. Sapatoxin A was identified as 12-O-[n-deca-2,4,6-trienoyl]-4-deoxyphorbol-13-acetate, B as 12-O-[n-deca-2,4,6-trienoyl]-4-deoxy-5-hydroxyphorbol-13-acetate and C as 12-O-[n-deca-2,4,6-trienoyl]-4,20-dideoxy-5-hydroxyphorbol-13-acetate, by spectroscopic analysis and hydrolysis reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号