首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   65篇
  603篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   4篇
  2018年   8篇
  2017年   5篇
  2016年   10篇
  2015年   21篇
  2014年   28篇
  2013年   32篇
  2012年   32篇
  2011年   34篇
  2010年   27篇
  2009年   12篇
  2008年   22篇
  2007年   20篇
  2006年   19篇
  2005年   19篇
  2004年   17篇
  2003年   19篇
  2002年   22篇
  2001年   20篇
  2000年   20篇
  1999年   12篇
  1998年   8篇
  1997年   9篇
  1996年   5篇
  1995年   3篇
  1994年   10篇
  1992年   6篇
  1991年   6篇
  1990年   10篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   9篇
  1984年   10篇
  1983年   6篇
  1981年   5篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   9篇
  1974年   8篇
  1973年   8篇
  1970年   2篇
  1969年   3篇
  1968年   9篇
  1967年   2篇
排序方式: 共有603条查询结果,搜索用时 0 毫秒
31.
Microbial diversity and heterogeneity in sandy subsurface soils   总被引:5,自引:0,他引:5  
Microbial community diversity and heterogeneity in saturated and unsaturated subsurface soils from Abbott's Pit in Virginia (1.57, 3.25, and 4.05 m below surface) and Dover Air Force Base in Delaware (6.00 and 7.50 m below surface) were analyzed using a culture-independent small-subunit (SSU) rRNA gene (rDNA)-based cloning approach. Four to six dominant operational taxonomic units (OTUs) were identified in 33 to 100 unique SSU rDNA clones (constituting about 40 to 50% of the total number of SSU rDNA clones in the clone library) from the saturated subsurface samples, whereas no dominant OTUs were observed in the unsaturated subsurface sample. Less than 10% of the clones among samples from different depths at the same location were identical, and the proportion of overlapping OTUs was lower for the samples that were vertically far apart than for adjacent samples. In addition, no OTUs were shared between the Abbott's Pit and Dover samples. The majority of the clones (80%) had sequences that were less than 5% different from those in the current databases. Phylogenetic analysis indicated that most of the bacterial clones were affiliated with members of the Proteobacteria family (90%), gram-positive bacteria (3%), and members of the Acidobacteria family (3%). Principal component analysis revealed that samples from different geographic locations were well separated and that samples from the same location were closely grouped together. In addition, the nonsaturated subsurface samples from Abbott's Pit clustered together and were well separated from the saturated subsurface soil sample. Finally, the overall diversity of the subsurface samples was much lower than that of the corresponding surface soil samples.  相似文献   
32.
Clerocidin (CL) is a topoisomerase II poison, which cleaves DNA irreversibly at guanines (G) and reversibly at cytosines (C). Furthermore, the drug can induce enzyme-independent strand breaks at the G and C level. It has been previously shown that G-damage is induced by alkylation of the guanine N7, followed by spontaneous depurination and nucleic acid cleavage, whereas scission at C is obtained only after treatment with hot alkali, and no information is available to explain the nature of this damage. We present here a systematic study on the reactivity of CL towards C both in the DNA environment and in solution. Selected synthetic derivatives were employed to evaluate the role of each chemical group of the drug. The structure of CL–dC adduct was then characterized by tandem mass spectrometry and NMR: the adduct is a stable condensed ring system resulting from a concerted electrophilic attack of the adjacent carbonyl and epoxide groups of CL towards the exposed NH2 and N3, respectively. This reaction mechanism, shown here for the first time, is characterized by faster kinetic rates than alkylation at G, due to the fact that the rate-determining step, alkylation at the epoxide, is an intramolecular process, provided a Schiff base linking CL and C can rapidly form, whereas the corresponding reaction of G N7 is intermolecular. These results provide helpful hints to explain the reversible/irreversible nature of topoisomerase II mediated DNA damage produced by CL at C/G steps.  相似文献   
33.
A stable mutant of Lactobacillus plantarum deficient in alanine racemase (Alr) was constructed by two successive homologous recombination steps. When the mutant was supplemented with D-alanine, growth and viability were unaffected. Surprisingly, deprivation of d-alanine during exponential growth did not result in a rapid and extensive lysis as observed in Alr-deficient strains of Escherichia coli or Bacillus subtilis. Rather, the starved mutant cells underwent a growth arrest and were gradually affected in viability with a decrease in colony forming units over 99% in less than 24 h. Additionally, fluorescent techniques demonstrated a loss of cell envelope integrity in the starved cells. Prolonged d-alanine starvation resulted in cells with an aberrant morphology. Scanning and transmission electron microscopy analyses revealed an increase in cell length, deficiencies in septum formation, thinning of the cell envelope and perforation of the cell wall in the septum region. We discuss the involvement of peptidoglycan hydrolases in these phenotypic defects in the context of the crucial role played by D-alanine in peptidoglycan biosynthesis and teichoic acids substitution.  相似文献   
34.
To evaluate PCR-generated artifacts (i.e., chimeras, mutations, and heteroduplexes) with the 16S ribosomal DNA (rDNA)-based cloning approach, a model community of four species was constructed from alpha, beta, and gamma subdivisions of the division Proteobacteria as well as gram-positive bacterium, all of which could be distinguished by HhaI restriction digestion patterns. The overall PCR artifacts were significantly different among the three Taq DNA polymerases examined: 20% for Z-Taq, with the highest processitivity; 15% for LA-Taq, with the highest fidelity and intermediate processitivity; and 7% for the conventionally used DNA polymerase, AmpliTaq. In contrast to the theoretical prediction, the frequency of chimeras for both Z-Taq (8.7%) and LA-Taq (6.2%) was higher than that for AmpliTaq (2.5%). The frequencies of chimeras and of heteroduplexes for Z-Taq were almost three times higher than those of AmpliTaq. The total PCR artifacts increased as PCR cycles and template concentrations increased and decreased as elongation time increased. Generally the frequency of chimeras was lower than that of mutations but higher than that of heteroduplexes. The total PCR artifacts as well as the frequency of heteroduplexes increased as the species diversity increased. PCR artifacts were significantly reduced by using AmpliTaq and fewer PCR cycles (fewer than 20 cycles), and the heteroduplexes could be effectively removed from PCR products prior to cloning by polyacrylamide gel purification or T7 endonuclease I digestion. Based upon these results, an optimal approach is proposed to minimize PCR artifacts in 16S rDNA-based microbial community studies.  相似文献   
35.
Photosensitization of HEC1-B cells with a low concentration of hypericin and doses of light below 10 J/cm(2) caused cell death (apoptosis occurred mainly at doses between 2 and 5 J/cm(2), whereas necrosis prevailed above 6 J/cm(2)). However, pre-exposure of cells to innocuous irradiation (2 J/cm(2)) and successive challenge with a light dose that normally induced apoptosis (5 J/cm(2)) altered the expression of the proteins involved in the regulation of apoptosis, stress response and cell cycle. This change resulted in a significant increase in cell photo-tolerance.  相似文献   
36.
Outbreaks of listeriosis and febrile gastroenteritis have been linked to produce contamination by Listeria monocytogenes. In order to begin to understand the physiology of the organism in a produce habitat, the ability of L. monocytogenes to attach to freshly cut radish tissue was examined. All strains tested had the capacity to attach sufficiently well such that they could not be removed during washing of the radish slices. A screen was developed to identify Tn917-LTV3 mutants that were defective in attachment to radish tissue, and three were characterized. Two of the three mutations were in genes with unknown functions. Both of the unknown genes mapped to a region predicted to contain genes necessary for flagellar export; however, only one of the two insertions caused a motility defect. The third insertion was found to be in an operon encoding a phosphoenolpyruvate-sugar phosphotransferase system. All three mutants were defective in attachment when tested at 30 degrees C; the motility mutant had the most severe phenotype. However, not all of the mutants were defective when tested at other temperatures. These results indicate that L. monocytogenes may use different attachment factors at different temperatures and that temperature should be considered an important variable in studies of the molecular mechanisms of Listeria fitness in complex environments.  相似文献   
37.
A new 6-desfluoroquinolone derivative, characterized by the presence of a 6-hydroxyl group instead of the usual fluorine atom at the C-6 position, was synthesized with the aim to better understand the mechanistic role of the C-6 substituent in the quinolone/DNA/DNA-gyrase interaction. The antibacterial activity unambiguously shows that the hydroxyl group is a good substitute for the C-6 fluorine atom, especially against Gram-positive bacteria. On the contrary, it is a very weak inhibitor of the target DNA gyrase, displaying the highest IC50 value observed for all the C-6 substituted analogues. This behaviour could be explained on the basis of its DNA binding properties.  相似文献   
38.
The hydrolytic activity of the 1,3,5-triaminocyclohexane derivatives TACH, TACI and TMCA complexed to Zn(II) and Cu(II) towards a model phosphoric ester and plasmid DNA has been evaluated by means of spectroscopic and gel-electrophoresis techniques. At conditions close to physiological, a prominent cleavage effect mediated by the nature of the ligand and metal ion was generally observed. TACI complexes are the most active in relaxing supercoiled DNA, the effect being explained by the affinity of the hydroxylated ligand for the nucleic acid. As indicated by the dependence of cleavage efficiency upon pH, Zn(II)-complexes act by a purely hydrolytic mechanism. In the case of Cu(II)-complexes, although hydrolysis should be prominent, involvement of an oxidative pathway cannot be completely ruled out.  相似文献   
39.

Background

Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.

Results

Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.

Conclusions

High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users.  相似文献   
40.
The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号