首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2016年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
12.
Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1(-/-) mice were loaded with NO-sensitive (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, DAF-FM) and superoxide-sensitive (dihydroethidium, DHE) probes. Gastrocnemius muscles were analyzed for SOD enzymes, nitric oxide synthases (NOS), and 3-nitrotyrosine (3-NT) content. A lack of SOD1 did not increase superoxide availability at rest because no increase in ethidium or 2-hydroxyethidium (2-HE) formation from DHE was seen in fibers from Sod1(-/-) mice compared with those from WT mice. Fibers from Sod1(-/-) mice had decreased NO availability (decreased DAF-FM fluorescence), increased 3-NT in muscle proteins indicating increased peroxynitrite formation and increased content of peroxiredoxin V (a peroxynitrite reductase), compared with WT mice. Muscle fibers from Sod1(-/-) mice showed substantially reduced generation of superoxide in response to contractions compared with fibers from WT mice. Inhibition of NOS did not affect DHE oxidation in fibers from WT or Sod1(-/-) mice at rest or during contractions, but transgenic mice overexpressing nNOS showed increased DAF-FM fluorescence and reduced DHE oxidation in resting muscle fibers. It is concluded that formation of peroxynitrite in muscle fibers is a major effect of lack of SOD1 in Sod1(-/-) mice and may contribute to fiber loss in this model, and that NO regulates superoxide availability and peroxynitrite formation in muscle.  相似文献   
13.
The aim of this study was to investigate the effects of cyclosporin (CyA) treatment on biliary glutathione efflux in rats of different ages (1, 2, 4, and 24 months). CyA treatment reduced the liver content of total glutathione in 1-, 2- and 24 month old rats (-30%, -43% and -30%, respectively). By contrast, oxidized glutathione (GSSG) concentration in liver tended to increase, although non significantly, in the rats aged 4 and 24 month (+36% and +28%, respectively). The oxidized-to-reduced glutathione ratio was significantly increased in 2-, 4- and 24 month old animals (+23%, +36% and >100%, respectively). Regarding biliary glutathione, our data indicate that efflux rates of total glutathione in control (untreated) rats increased to a maximum at 4 months, and decreased (-56%) in 24 month old rats, although values were still higher than those from young animals. CyA treatment significantly reduced biliary glutathione secretion except in 24 month old rats (-98%, -66% and -32%, at 1, 2 and 4 month, respectively). In addition, following inhibition of the intrabiliary catabolism of the tripeptide by acivicin, glutathione efflux rates into bile were significantly reduced by the drug only in 1- and 2 month old rats (-29% and -55%, respectively) and even tended to increase, although non significantly, in oldest animals. Our data indicate that inhibition of biliary glutathione efflux by CyA was greater in younger rats and support the view that increased intrabiliary catabolism of the tripeptide and inhibition of its canalicular transport could contribute to the decline in biliary glutathione secretion induced by the drug.  相似文献   
14.
Skeletal muscle has been recognized as a potential source for generation of reactive oxygen and nitrogen species for more than 20 years. Initial investigations concentrated on the potential role of mitochondria as a major source for generation of superoxide as a "by-product" of normal oxidative metabolism, but recent studies have identified multiple subcellular sites, where superoxide or nitric oxide are generated in regulated and controlled systems in response to cellular stimuli. Full evaluation of the factors regulating these processes and the functions of the reactive oxygen species generated are important in understanding the redox biology of skeletal muscle.  相似文献   
15.
Increased amounts of reactive oxygen species (ROS) are generated by skeletal muscle during contractile activity, but their intracellular source is unclear. The oxidation of 2',7'-dichlorodihydrofluorescein (DCFH) was examined as an intracellular probe for reactive oxygen species in skeletal muscle myotubes derived from muscles of wild-type mice and mice that were heterozygous knockout for manganese superoxide dismutase (Sod2(+/-)), homozygous knockout for glutathione peroxidase 1 (GPx1(-/-)), or MnSOD transgenic overexpressors (Sod2-Tg). Myoblasts were stimulated to fuse and loaded with DCFH 5-7 days later. Intracellular DCF epifluorescence was measured and myotubes were electrically stimulated to contract for 15 min. Quiescent myotubes with decreased MnSOD or GPx1 showed a significant increase in the rate of DCFH oxidation whereas those with increased MnSOD did not differ from wild type. Following contractions, myotubes from all groups showed an equivalent increase in DCF fluorescence. Thus the oxidation of DCFH in quiescent skeletal muscle myotubes is influenced by the content of enzymes that regulate mitochondrial superoxide and hydrogen peroxide content. In contrast, the increase in DCFH oxidation following contractions was unaffected by reduced or enhanced MnSOD or absent GPx1, indicating that reactive oxygen species produced by contractions were predominantly generated by nonmitochondrial sources.  相似文献   
16.
Skeletal muscle is repeatedly exposed to passive stretches due to the activation of antagonist muscles and to external forces. Stretch has multiple effects on muscle mass and function, but the initiating mechanisms and intracellular signals that modulate those processes are not well understood. Mechanical stretch applied to some cell types induces production of reactive oxygen species (ROS) and nitric oxide that modulate various cellular signalling pathways. The aim of this study was to assess whether intracellular activities of ROS and nitric oxide were modulated by passive stretches applied to single mature muscle fibres isolated from young and old mice. We developed a novel approach to apply passive stretch to single mature fibres from the flexor digitorum brevis muscle in culture and to monitor the activities of ROS and nitric oxide in situ by fluorescence microscopy. Passive stretch applied to single skeletal muscle fibres from young mice induced an increase in dihydroethidium oxidation (reflecting intracellular superoxide) with no increase in intracellular DAF-FM oxidation (reflecting nitric oxide activity) or CM-DCFH oxidation. In contrast, in fibres isolated from muscles of old mice passive stretch was found to induce an increase in intracellular nitric oxide activities with no change in DHE oxidation.  相似文献   
17.
18.
Free radicals are involved in aging and cyclosporin A-induced toxicity. The age-related changes in the liver oxidative status of glutathione, lipid peroxidation, and the activity of the enzymatic antioxidant defense system, as well as the influence of aging on the susceptibility to the hepatotoxic effects of cyclosporin (CyA) were investigated in rats of different ages (1, 2, 4, and 24 months). The hepatic content of reduced glutathione (GSH) increased with aging, peaked at 4 months, and decreased in senescent rats. By contrast, glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS) concentrations and superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the oldest than in the youngest rats. CyA treatment, besides inducing the well-known cholestatic syndrome, increased liver GSSG and TBARS contents and the GSSG/GSH molar ratio, and altered the nonenzymatic and enzymatic antioxidant defense systems. The CyA-induced cholestasis and hepatic depletion of GSH, and the increases in the GSSG/GSH ratio, and in GSSG and TBARS concentrations were higher in the older than the mature rats. Moreover, superoxide dismutase and catalase activities were found to be significantly decreased only in treated senescent rats. The higher CyA-induced oxidative stress, lipoperoxidation, and decreases in the antioxidant defense systems in the aged animals render them more susceptible to the hepatotoxic effects of cyclosporin.  相似文献   
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号