首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   98篇
  2024年   2篇
  2023年   6篇
  2022年   9篇
  2021年   25篇
  2020年   13篇
  2019年   34篇
  2018年   22篇
  2017年   28篇
  2016年   40篇
  2015年   57篇
  2014年   58篇
  2013年   59篇
  2012年   115篇
  2011年   70篇
  2010年   38篇
  2009年   49篇
  2008年   60篇
  2007年   47篇
  2006年   54篇
  2005年   42篇
  2004年   45篇
  2003年   39篇
  2002年   29篇
  2001年   17篇
  2000年   21篇
  1999年   24篇
  1998年   21篇
  1997年   15篇
  1996年   7篇
  1995年   12篇
  1994年   14篇
  1993年   10篇
  1992年   9篇
  1991年   8篇
  1990年   12篇
  1989年   3篇
  1988年   8篇
  1987年   9篇
  1986年   8篇
  1985年   11篇
  1984年   2篇
  1983年   4篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1975年   3篇
  1974年   4篇
  1972年   3篇
  1971年   2篇
  1968年   1篇
排序方式: 共有1180条查询结果,搜索用时 58 毫秒
41.
Biomechanics and Modeling in Mechanobiology - Chondrocytes use the pathways of central metabolism to synthesize molecular building blocks and energy for cartilage homeostasis. An interesting...  相似文献   
42.
Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.  相似文献   
43.
Chloride (Cl?) has been recently described as a beneficial macronutrient, playing specific roles in promoting plant growth and water‐use efficiency (WUE). However, it is still unclear how Cl? could be beneficial, especially in comparison with nitrate (NO3?), an essential source of nitrogen that shares with Cl? similar physical and osmotic properties, as well as common transport mechanisms. In tobacco plants, macronutrient levels of Cl? specifically reduce stomatal conductance (gs) without a concomitant reduction in the net photosynthesis rate (AN). As stomata‐mediated water loss through transpiration is inherent in the need of C3 plants to capture CO2, simultaneous increase in photosynthesis and WUE is of great relevance to achieve a sustainable increase in C3 crop productivity. Our results showed that Cl?‐mediated stimulation of larger leaf cells leads to a reduction in stomatal density, which in turn reduces gs and water consumption. Conversely, Cl? improves mesophyll diffusion conductance to CO2 (gm) and photosynthetic performance due to a higher surface area of chloroplasts exposed to the intercellular airspace of mesophyll cells, possibly as a consequence of the stimulation of chloroplast biogenesis. A key finding of this study is the simultaneous improvement of AN and WUE due to macronutrient Cl? nutrition. This work identifies relevant and specific functions in which Cl? participates as a beneficial macronutrient for higher plants, uncovering a sustainable approach to improve crop yield.  相似文献   
44.
Taxol is an anticancer drug that triggers apoptosis in a wide spectrum of cancers such as ovarian, breast, lung, head and neck, and bladder carcinoma by both caspase-dependent and -independent apoptosis mechanisms. However, the exact signaling pathways involved in taxol-induced apoptosis strongly depend on the cellular background and they are not completely established yet. In this study we demonstrate that taxol induces caspase-3-independent apoptosis in NIH3T3 cells by a calpain-mediated mechanism. Taxol treatment produced changes in the mitochondrial membrane potential (Delta Psi m) which could be responsible of Ca(2+) release from the mitochondria and the consequent calpain activation. Interestingly, we show that calpain produced proteolysis of caspase-3 and demonstrate that, accordingly, calpain inhibition increased taxol-induced apoptosis. In addition, we reveal that poly (ADP-ribose) polymerase (PARP) was processed by calpain in taxol-treated cells and by caspase-3 after calpain inhibition. In conclusion, these results demonstrate for the first time that calpain could play an important role modulating taxol-induced apoptosis. Further studies are needed to address the potentiality of inducing apoptosis by a combined use of taxol and calpain inhibitors in cells with increased calpain activity.  相似文献   
45.
Changes to the translational machinery that occur during apoptosis have been described in the last few years. The two principal ways in which translational factors are modified during apoptosis are: (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. Taxol, a member of a new class of anti-tubulin drugs, is currently used in chemotherapeutic treatments of different types of cancers. We have previously demonstrated that taxol induces calpain-mediated apoptosis in NIH3T3 cells [Pi?eiro et al., Exp. Cell Res., 2007, 313:369-379]. In this study we found that translation was significantly inhibited during taxol-induced apoptosis in these cells. We have studied the phosphorylation status and expression levels of eIF2a, eIF4E, eIF4G and the regulatory protein 4E-BP1, all of which are implicated in translation regulation. We found that taxol treatment did not induce changes in eIF2alpha phosphorylation, but strongly decreased eIF4G, eIF4E and 4E-BP1 expression levels. MDL28170, a specific inhibitor of calpain, prevented reduction of eIF4G, but not of eIF4E or 4E-BP1 levels. Moreover, the calpain inhibitor did not block taxol-induced translation inhibition. All together these findings demonstrated that none of these factors are responsible for the taxol-induced protein synthesis inhibition. On the contrary, taxol treatment increased elongation factor eEF2 phosphorylation in a calpain-independent manner, supporting a role for eEF2 in taxol-induced translation inhibition.  相似文献   
46.
N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation   总被引:2,自引:0,他引:2  
Although GSK-3 activity can be regulated by phosphorylation and through interaction with GSK-3-binding proteins, here we describe N-terminal proteolysis as a novel way to regulate GSK-3. When brain extracts were exposed to calcium, GSK-3 was truncated, generating two fragments of approximately 40 and 30 kDa, a proteolytic process that was inhibited by specific calpain inhibitors. Interestingly, instead of inhibiting this enzyme, GSK-3 truncation augmented its kinase activity. When we digested recombinant GSK-3 alpha and GSK-3beta protein with calpain, each isoform was cleaved differently, yet the truncated GSK-3 isoforms were still active kinases. We also found that lithium, a GSK-3 inhibitor, inhibits full-length and cleaved GSK-3 isoforms with the same IC(50) value. Calpain removed the N-terminal ends of His-tagged GSK-3 isoenzymes, and exposing cultured cortical neurons with ionomycin, glutamate, or N-methyl-d-aspartate led to the truncation of GSK-3. This truncation was blocked by the calpain inhibitor calpeptin, at the same concentration at which it inhibits calpain-mediated cleavage of NMDAR-2B and of p35 (the regulatory subunit of CDK5). Together, our data demonstrate that calpain activation produces a truncation of GSK-3 that removes an N-terminal inhibitory domain. Furthermore, we show that GSK-3 alpha and GSK-3beta isoenzymes have a different susceptibility to this cleavage, suggesting a means to specifically regulate these isoenzymes. These data provide the first direct evidence that calpain promotes GSK-3 truncation in a way that has implications in signal transduction, and probably in pathological disorders such as Alzheimer disease.  相似文献   
47.
Brain-derived neurotrophic factor (BDNF) is considered as a putative therapeutic agent against stroke. Since BDNF role on oxidative stress is uncertain, we have studied this role in a rat brain slice ischemia model, which allows BDNF reaching the neural parenchyma. Hippocampal and cerebral cortex slices were subjected to oxygen and glucose deprivation (OGD) and then returned to normoxic conditions (reperfusion-like, RL). OGD/RL increased a number of parameters mirroring oxidative stress in the hippocampus that were reduced by the BDNF presence. BDNF also reduced the OGD/RL-increased activity in a number of antioxidant enzymes in the hippocampus but no effects were observed in the cerebral cortex. In general, we conclude that alleviation of oxidative stress by BDNF in OGD/RL-exposed slices relies on decreasing cPLA2 activity, rather than modifying antioxidant enzyme activities. Moreover, a role for the oxidative stress in the differential ischemic vulnerability of cerebral cortex and hippocampus is also supported.  相似文献   
48.
49.
50.
BackgroundThe Spanish National Hip Fracture Registry (or Registro Nacional de Fractura de Cadera, RNFC) is a database of hip fracture patients admitted to Spanish hospitals. Its goals include assessment and continuous improvement of the care process.ObjectivesTo (1) establish a series of indicators, (2) evaluate their initial fulfillment, (3) propose quality standards, (4) suggest recommendations to facilitate standards compliance, and (5) monitor the indicators.MethodThe indicators fulfilled the criteria of (1) evaluating the process or outcome, (2) being clinically relevant for patients, (3) being modifiable through changes in healthcare practice, and (4) being considered important by the RNFC participants. The first quartile obtained by the group of hospitals in each of the respective variables was proposed as the standard. The Indicators Advisory Committee (IAC) elaborated a list of recommendations for each indicator, based on the available evidence.ResultsSeven indicators were chosen. These indicators (its baseline compliance vs. the standard to be reached, respectively) were: the proportion of patients receiving surgery within 48 h (44% vs. 63%), mobilized the first postoperative day (56% vs. 86%), with antiosteoporotic medication at discharge (32% vs. 61%), with calcium supplements at discharge (46% vs. 77%), with vitamin D supplements at discharge (67% vs. 92%), who developed pressure ulcers during hospitalization (7.2% vs. 2.1%) and with independent mobility at 30 days (58% vs. 70%). The IAC has established 25 recommendations for improving care.ConclusionThe indicators and standards chosen are presented, as well as the list of recommendations. This process completes the first step to improve quality of care. The results will be evaluated 6 months after implementing the recommendations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号