首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   98篇
  2024年   2篇
  2023年   6篇
  2022年   9篇
  2021年   25篇
  2020年   13篇
  2019年   34篇
  2018年   22篇
  2017年   28篇
  2016年   40篇
  2015年   57篇
  2014年   58篇
  2013年   59篇
  2012年   115篇
  2011年   70篇
  2010年   38篇
  2009年   49篇
  2008年   60篇
  2007年   47篇
  2006年   54篇
  2005年   42篇
  2004年   45篇
  2003年   39篇
  2002年   29篇
  2001年   17篇
  2000年   21篇
  1999年   24篇
  1998年   21篇
  1997年   15篇
  1996年   7篇
  1995年   12篇
  1994年   14篇
  1993年   10篇
  1992年   9篇
  1991年   8篇
  1990年   12篇
  1989年   3篇
  1988年   8篇
  1987年   9篇
  1986年   8篇
  1985年   11篇
  1984年   2篇
  1983年   4篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1975年   3篇
  1974年   4篇
  1972年   3篇
  1971年   2篇
  1968年   1篇
排序方式: 共有1180条查询结果,搜索用时 17 毫秒
241.
We have analyzed double mutants that combine late-flowering mutations at four flowering-time loci (FVE, FPA, FWA, and FT) with mutations at the LEAFY (LFY), APETALA1 (AP1), and TERMINAL FLOWER1 (TFL1) loci involved in the floral initiation process (FLIP). Double mutants between ft-1 or fwa-1 and lfy-6 completely lack flowerlike structures, indicating that both FWA and FT act redundantly with LFY to control AP1. Moreover, the phenotypes of ft-1 ap1-1 and fwa-1 ap1-1 double mutants are reminiscent of the phenotype of ap1-1 cal-1 double mutants, suggesting that FWA and FT could also be involved in the control of other FLIP genes. Such extreme phenotypes were not observed in double mutants between fve-2 or fpa-1 and lfy-6 ap1-1. Each of these showed a phenotype similar to that of ap1-1 or lfy-6 mutants grown under noninductive photoperiods, suggesting a redundant interaction with FLIP genes. Finally, the phenotype of double mutants combining the late-flowering mutations with tfl1-2 were also consistent with the different roles of flowering-time genes.  相似文献   
242.
243.
Antibiotic production through fermentation is often cited as an example of an established biotechnology. Yet despite the commercial importance of antibiotics, or perhaps because of it, there only exists in the public domain a relatively sketchy picture of the biochemistry and molecular genetics of producer strains.This article describes the metabolic pathways leading to β-lactam compounds and suggests strategies which could be adopted to improve productivity through molecular biology.  相似文献   
244.
We used data from 12 allozyme loci for two endemic Brassicaceae from Gran Canaria (the endangered narrow endemic Crambe tamadabensis and its more widespread congener C. pritzelii) to assess whether their genetic diversity patterns reflect their phylogenetic closeness and contrasting population sizes and distribution areas, and to derive conservation implications. Genetic diversity values are high for both species and slightly higher in C. tamadabensis, despite its narrow distribution in north‐western Gran Canaria. At odds with the generally high interpopulation diversity levels reported in Canarian endemics, values of GST in C. tamadabensis and C. pritzelii are rather low (0.067 and 0.126, respectively). We construe that the higher genetic structure detected in C. pritzelii is mainly a result of unbalanced allele frequencies and low population sizes at the edges of its distribution. The overall high allozyme variation detected in C. tamadabensis and C. pritzelii is nevertheless compatible with an incipient but consistent genetic differentiation between the two species, modulated by recurrent bottlenecks caused by grazing and drift. Our data suggest that conservation efforts aimed at maintaining the existing genetic connectivity in each species and ex situ conservation of seeds are the best strategies to conserve their genetic diversity.  相似文献   
245.
Land-use change is the major driver of biodiversity loss. However, taxonomic diversity (TD) and functional diversity (FD) might respond differently to land-use change, and this response might also vary depending on the biotic group being analysed. In this study, we compare the TD and FD of four biotic groups (ants, birds, herbaceous, woody vegetation) among four land-use types that represent a gradient of land-use intensity in a Mediterranean landscape (Mediterranean shrublands, dehesas, mixed-pine forests, olive groves). Analyses were performed separately at two different spatial scales: the sampling unit scale and the site scale. Land-use intensity effects on TD and FD were quite different and highly varied among the four biotic groups, with no single clear pattern emerging that could be considered general for all organisms. Additive partitioning of species diversity revealed clear contrasting patterns between TD and FD in the percentage of variability observed at each spatial scale. While most variability in TD was found at the larger scales, irregardless of organism group and land-use type, most variability in FD was found at the smallest scale, indicating that species turnover among communities is much greater than functional trait turnover. Finally, we found that TD and FD did not vary consistently, but rather followed different trajectories that largely depended on the biotic group and the intensity of land-use transformation. Our results highlight that the relationship of land use with TD and FD is highly complex and context-dependent.  相似文献   
246.
247.
Cdc25B phosphatases are involved in cell cycle checkpoints and have become a possible target for developing new anticancer drugs. A more rational design of Cdc25B ligands would benefit from detailed knowledge of its tertiary structure. The conformational flexibility of the C‐terminal region of the Cdc25B catalytic domain has been debated recently and suggested to play an important structural role. Here, a combination of experimental NMR measurements and molecular dynamics simulations for the complete catalytic domain of the Cdc25B phosphatase is presented. The stability of the C‐terminal α‐helix is confirmed, but the last 20 residues in the complete catalytic domain are very flexible, partially occlude the active site and may establish transient contacts with the protein core. This flexibility in the C‐terminal tail may modulate the molecular recognition of natural substrates and competitive inhibitors by Cdc25B. Proteins 2016; 84:1567–1575. © 2016 Wiley Periodicals, Inc.  相似文献   
248.
249.
Pathogenic trypanosomatid parasites are auxotrophic for heme and they must scavenge it from their human host. Trypanosoma brucei (responsible for sleeping sickness) and Leishmania (leishmaniasis) can fulfill heme requirement by receptor‐mediated endocytosis of host hemoglobin. However, the mechanism used to transfer hemoglobin‐derived heme from the lysosome to the cytosol remains unknown. Here we provide strong evidence that HRG transporters mediate this essential step. In bloodstream T. brucei, TbHRG localizes to the endolysosomal compartment where endocytosed hemoglobin is known to be trafficked. TbHRG overexpression increases cytosolic heme levels whereas its downregulation is lethal for the parasites unless they express the Leishmania orthologue LmHR1. LmHR1, known to be an essential plasma membrane protein responsible for the uptake of free heme in Leishmania, is also present in its acidic compartments which colocalize with endocytosed hemoglobin. Moreover, LmHR1 levels modulated by its overexpression or the abrogation of an LmHR1 allele correlate with the mitochondrial bioavailability of heme from lysosomal hemoglobin. In addition, using heme auxotrophic yeasts we show that TbHRG and LmHR1 transport hemoglobin‐derived heme from the digestive vacuole to the cytosol. Collectively, these results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号