全文获取类型
收费全文 | 105644篇 |
免费 | 6575篇 |
国内免费 | 17篇 |
专业分类
112236篇 |
出版年
2023年 | 588篇 |
2022年 | 769篇 |
2021年 | 1538篇 |
2020年 | 1269篇 |
2019年 | 1429篇 |
2018年 | 2657篇 |
2017年 | 2380篇 |
2016年 | 3236篇 |
2015年 | 4262篇 |
2014年 | 4558篇 |
2013年 | 5901篇 |
2012年 | 6864篇 |
2011年 | 6174篇 |
2010年 | 4133篇 |
2009年 | 3432篇 |
2008年 | 5046篇 |
2007年 | 4812篇 |
2006年 | 4653篇 |
2005年 | 3944篇 |
2004年 | 3992篇 |
2003年 | 3532篇 |
2002年 | 3296篇 |
2001年 | 2723篇 |
2000年 | 2516篇 |
1999年 | 2065篇 |
1998年 | 1021篇 |
1997年 | 762篇 |
1996年 | 772篇 |
1995年 | 719篇 |
1994年 | 658篇 |
1992年 | 1243篇 |
1991年 | 1164篇 |
1990年 | 1116篇 |
1989年 | 1173篇 |
1988年 | 973篇 |
1987年 | 995篇 |
1986年 | 910篇 |
1985年 | 956篇 |
1984年 | 787篇 |
1983年 | 703篇 |
1979年 | 796篇 |
1978年 | 599篇 |
1977年 | 587篇 |
1975年 | 697篇 |
1974年 | 757篇 |
1973年 | 720篇 |
1972年 | 655篇 |
1970年 | 622篇 |
1969年 | 687篇 |
1968年 | 648篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
A significantly higher frequency of apoptosis was documented by flow cytometry and by ELISA analysis, and significantly higher numbers of necrotic cells were demonstrated by ELISA within the thymus of Lurcher mice in comparison with the control C3H mice. These can be regarded as important markers of degenerative changes in this primary immune organ. This tendency is supported by histological observation of the absence of a clear interface between thymic cortex and medulla and an insignificantly increased number of Hassall's corpuscles resembling an onset of thymic atrophy. 相似文献
993.
Montero M Lobatón CD Gutierrez-Fernández S Moreno A Alvarez J 《The Journal of biological chemistry》2003,278(50):49972-49979
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation. 相似文献
994.
This study assessed the effect of leaf age on construction cost (CC) in the mangrove species Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle growing in their natural habitat. Leaf osmolality values were species-specific, the highest in A. germinans (1 693 mmol kg–1) and the lowest in L. racemosa (1 270 mmol kg–1). In the three species, contents of chlorophyll (a+b) (Chla+b) and nitrogen (N) per unit of leaf area were maximal in adult leaves and tended to decline with age. Leaf mass to leaf area ratio (LMA) and ash content increased during leaf ageing. Similarly, as leaves aged, a significant increase in leaf construction cost per leaf area (CCa) was observed, while per leaf mass (CCm) it remained almost constant, suggesting a sustained production of leaf compounds as leaves became older. CC was positively correlated with LMA and heat of combustion (Hc) per leaf area, suggesting differences among species in the quantity and composition of expensive compounds. Leaf half lifetime (t0.5) showed contrasting values in the three mangrove species (60, 111, and 160 d in L. racemosa, R. mangle, and A. germinans, respectively). Overall, L. racemosa was the species with less expensive leaves to construct while leaves of A. germinans and R. mangle had the highest CCm and CCa, respectively. Leaf longevity was positively correlated with the ratio between CC and maximum photosynthetic rate (P
max), clearly showing the existence of a balance between leaf costs and benefits. 相似文献
995.
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called “portal region”, formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs. 相似文献
996.
Eric Dumonteil Pierre Nouvellet Kathryn Rosecrans Maria Jesus Ramirez-Sierra Rubi Gamboa-León Vladimir Cruz-Chan Miguel Rosado-Vallado Sébastien Gourbière 《PLoS neglected tropical diseases》2013,7(9)
Background
Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control.Methodology/principal findings
We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation.Conclusions/significance
These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control. 相似文献997.
Jonathan Martínez-Fábregas Irene Díaz-Moreno Katiuska González-Arzola Simon Janocha José A. Navarro Manuel Hervás Rita Bernhardt Antonio Díaz-Quintana Miguel á. De la Rosa 《Molecular & cellular proteomics : MCP》2013,12(12):3666-3676
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.Programmed cell death (PCD)1 is a fundamental event for the development of multicellular organisms and the homeostasis of their tissues. It is an evolutionarily conserved mechanism present in organisms ranging from yeast to mammals (1–3).In mammals, cytochrome c (Cc) and dATP bind to apoptosis protease-activating factor-1 (Apaf-1) in the cytoplasm, a process leading to the formation of the Apaf-1/caspase-9 complex known as apoptosome. This apoptosome subsequently activates caspases-3 and -7 (4, 5). In other organisms, such as Caenorhabditis elegans or Drosophila melanogaster, however, Cc is not essential for the assembly and activation of the apoptosome (6) despite the presence of proteins homologous to Apaf-1—cell death abnormality-4 (CED-4) in C. elegans and Drosophila Apaf-1-related killer (Dark) in D. melanogaster—which have been found to be essential for caspase cascade activation. Furthermore, other organisms such as Arabidopsis thaliana lack Apaf-1 (7). In fact, only highly distant caspase homologues (metacaspases) (8, 9), serine proteases (saspases) (10), phytaspases (11) and VEIDases (12–14) with caspase-like activity have been detected in plants; however, their targets remain veiled and whether they are activated by Cc remains unclear.Intriguingly, the release of Cc from mitochondria into the cytoplasm during the onset of PCD is an evolutionarily conserved event found in organisms ranging from yeast (15) and plants (16) to flies (17), and mammals (18). However, understanding of the roles of this phenomenon in different species can be said to be uneven at best. In fact, the release of Cc from mitochondria has thus far been considered a random event in all organisms, save mammals. Thus, the participation of Cc in the onset and progression of PCD needs to be further elucidated.Even in the case of mammals, the role(s) of Cc in the cytoplasm during PCD remain(s) controversial. Recently, new putative functions of Cc, going beyond the already-established apoptosome assembly process, have been proposed in the nucleus (19, 20) and the endoplasmic reticulum (21–23). Neither these newly proposed functions nor other arising functions, such as oxidative stress (24), are as yet fully understood. This current state of affairs demands deeper exploration of the additional roles played by Cc in nonmammalian species.In this study, putative novel Cc-partners involved in plant PCD were identified. For this identification, a proteomic approach was employed based on affinity chromatography and using Cc as bait. The Cc-interacting proteins were identified using nano-liquid chromatography tandem mass spectrometry (NanoLC-MS/MS). These Cc-partners were then further confirmed in vivo through bimolecular fluorescence complementation (BiFC) in A. thaliana protoplasts and human HEK293T cells, as a heterologous system. Finally, the Cc-GLY2, Cc-NRP1 and Cc-TCL interactions were corroborated in vitro using surface plasmon resonance (SPR).These results indicate that Cc is able to interact with targets in the plant cell cytoplasm during PCD. Moreover, they provide new ways of understanding why Cc release is an evolutionarily well-conserved event, and allow us to propose Cc as a signaling messenger, which somehow controls different essential events during PCD. 相似文献
998.
Margreet J. Oosterkamp Teun Veuskens Flávia Talarico Saia Sander A. B. Weelink Lynne A. Goodwin Hajnalka E. Daligault David C. Bruce John C. Detter Roxanne Tapia Cliff S. Han Miriam L. Land Loren J. Hauser Alette A. M. Langenhoff Jan Gerritse Willem J. H. van Berkel Dietmar H. Pieper Howard Junca Hauke Smidt Gosse Schraa Mark Davids Peter J. Schaap Caroline M. Plugge Alfons J. M. Stams 《PloS one》2013,8(6)
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far. 相似文献
999.
1000.
Giovanna Poce Robert H. Bates Salvatore Alfonso Martina Cocozza Giulio Cesare Porretta Lluís Ballell Joaquin Rullas Fátima Ortega Alessandro De Logu Emanuela Agus Valentina La Rosa Maria Rosalia Pasca Edda De Rossi Baojie Wae Scott G. Franzblau Fabrizio Manetti Maurizio Botta Mariangela Biava 《PloS one》2013,8(2)
1,5-Diphenyl pyrroles were previously identified as a class of compounds endowed with high in vitro efficacy against M. tuberculosis. To improve the physical chemical properties and drug-like parameters of this class of compounds, a medicinal chemistry effort was undertaken. By selecting the optimal substitution patterns for the phenyl rings at N1 and C5 and by replacing the thiomorpholine moiety with a morpholine one, a new series of compounds was produced. The replacement of the sulfur with oxygen gave compounds with lower lipophilicity and improved in
vitro microsomal stability. Moreover, since the parent compound of this family has been shown to target MmpL3, mycobacterial mutants resistant to two compounds have been isolated and characterized by sequencing the mmpL3 gene; all the mutants showed point mutations in this gene. The best compound identified to date was progressed to dose-response studies in an acute murine TB infection model. The resulting ED99 of 49 mg/Kg is within the range of commonly employed tuberculosis drugs, demonstrating the potential of this chemical series. The in vitro and in vivo target validation evidence presented here adds further weight to MmpL3 as a druggable target of interest for anti-tubercular drug discovery. 相似文献