首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   886篇
  免费   60篇
  2023年   9篇
  2022年   6篇
  2021年   17篇
  2020年   8篇
  2019年   28篇
  2018年   22篇
  2017年   23篇
  2016年   33篇
  2015年   40篇
  2014年   42篇
  2013年   59篇
  2012年   92篇
  2011年   67篇
  2010年   39篇
  2009年   46篇
  2008年   60篇
  2007年   39篇
  2006年   38篇
  2005年   42篇
  2004年   30篇
  2003年   31篇
  2002年   21篇
  2001年   17篇
  2000年   16篇
  1999年   16篇
  1998年   14篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有946条查询结果,搜索用时 203 毫秒
101.
Lactobacillus pentosus LPS26, isolated from a natural fermentation of green olives, produces a capsular polymer constituted of two exopolysaccharides (EPS): EPS A, a high-molecular-weight (high-Mw) polysaccharide (1.9x10(6) Da) composed of glucose and rhamnose (3:1), and EPS B, a low-Mw polysaccharide (3.3x10(4) Da) composed of glucose and mannose (3:1). Fermentation experiments in a chemically semidefined medium with different carbon sources (glucose, fructose, mannitol, and lactose) showed that all of them except fructose supported EPS A production rather than EPS B production. The influence of temperature and pH was further analyzed. As the temperature dropped, increased synthesis of both EPS was detected. The control of pH especially enhanced EPS B production. With regard to this, the maximum total EPS production (514 mg liter-1) was achieved at a suboptimal growth temperature (20 degrees C) and pH 6.0. Continuous cultures showed that EPS A, synthesized mainly at low dilution rates, is clearly dependent on the growth rate, whereas EPS B synthesis was hardly affected. EPS production was also detected in supplemented skimmed milk, but no increase on the viscosity of the fermented milk was recorded. This could be linked to the high proportion of the low-Mw polysaccharide produced in these conditions in contrast to that observed in culture media. Overall, the present study shows that culture conditions have a clear impact on the type and concentration of EPS produced by strain LPS26, and consequently, these conditions should be carefully selected for optimization and application studies. Finally, it should be noted that this is, to our knowledge, the first report on EPS production by L. pentosus.  相似文献   
102.
An accelerated degradation study has been performed on TLT, a pseudopeptide that includes esterified tyrosine and lysine linked by urea bonds, as well as on their derivatives, i.e., a dimethacrylic cross-linker (DMTLT) and a poly(dimethylacrylamide) cross-linked with DMTLT. The monitoring and analytical characterization has been carried out by capillary electrophoresis-mass spectrometry (CE-MS), using ion trap and time-of-flight MS analyzers. Several degradative species have been identified, and a kinetic analysis of the variation of their concentration with time has been obtained. During the initial stages of degradation, there is a competition between hydrolysis of the ester groups and cyclization by nucleophilic attack of the NHs of the urea groups to the carbonyl ester group. At higher degradation time (weeks or months), evidences of backbone breakdown, including urea hydrolysis, have been found.  相似文献   
103.
104.
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitous transmembrane metalloprotease that cleaves the extracellular regions from over 40 different transmembrane target proteins, including Notch and amyloid precursor protein. ADAM10 is essential for embryonic development and is also important in inflammation, cancer, and Alzheimer disease. However, ADAM10 regulation remains poorly understood. ADAM10 is compartmentalized into membrane microdomains formed by tetraspanins, which are a superfamily of 33 transmembrane proteins in humans that regulate clustering and trafficking of certain other transmembrane “partner” proteins. This is achieved by specific tetraspanin-partner interactions, but it is not clear which tetraspanins specifically interact with ADAM10. The aims of this study were to identify which tetraspanins interact with ADAM10 and how they regulate this metalloprotease. Co-immunoprecipitation identified specific ADAM10 interactions with Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33/Penumbra. These are members of the largely unstudied TspanC8 subgroup of tetraspanins, all six of which promoted ADAM10 maturation. Different cell types express distinct repertoires of TspanC8 tetraspanins. Human umbilical vein endothelial cells express relatively high levels of Tspan14, the knockdown of which reduced ADAM10 surface expression and activity. Mouse erythrocytes express predominantly Tspan33, and ADAM10 expression was substantially reduced in the absence of this tetraspanin. In contrast, ADAM10 expression was normal on Tspan33-deficient mouse platelets in which Tspan14 is the major TspanC8 tetraspanin. These results define TspanC8 tetraspanins as essential regulators of ADAM10 maturation and trafficking to the cell surface. This finding has therapeutic implications because focusing on specific TspanC8-ADAM10 complexes may allow cell type- and/or substrate-specific ADAM10 targeting.  相似文献   
105.
Control of Frankliniella occidentalis (Pergande) is a serious problem for agriculture all over the world because of the limited range of insecticides that are available. Insecticide resistance in F. occidentalis has been reported for all major insecticide groups. Our previous studies showed that cytochrome P450-mediated detoxification is a major mechanism responsible for insecticide resistance in this pest. Degenerate polymerase chain reaction was used to identify P450 genes that might be involved in acrinathrin resistance, in a laboratory population of F. occidentalis. Associated sequences were classified as belonging to the CYP4 and CYP6 families. Real-time quantitative polymerase chain reaction analyses revealed that two genes, CYP6EB1 and CYP6EC1, were over-expressed in adults and L2 larvae of the resistant population, when compared with the susceptible population, suggesting their possible involvement in resistance to acrinathrin.  相似文献   
106.
Modulation of macrophage polarization underlies the onset and resolution of inflammatory processes, with polarization-specific molecules being actively sought as potential diagnostic and therapeutic tools. Based on their cytokine profile upon exposure to pathogenic stimuli, human monocyte-derived macrophages generated in the presence of GM-CSF or M-CSF are considered as proinflammatory (M1) or anti-inflammatory (M2) macrophages, respectively. We report in this study that the prolyl hydroxylase PHD3-encoding EGLN3 gene is specifically expressed by in vitro-generated proinflammatory M1(GM-CSF) human macrophages at the mRNA and protein level. Immunohistochemical analysis revealed the expression of PHD3 in CD163(+) lung macrophages under basal homeostatic conditions, whereas PHD3(+) macrophages were abundantly found in tissues undergoing inflammatory responses (e.g., Crohn's disease and ulcerative colitis) and in tumors. In the case of melanoma, PHD3 expression marked a subset of tumor-associated macrophages that exhibit a weak (e.g., CD163) or absent (e.g., FOLR2) expression of typical M2-polarization markers. EGLN3 gene expression in proinflammatory M1(GM-CSF) macrophages was found to be activin A dependent and could be prevented in the presence of an anti-activin A-blocking Ab or inhibitors of activin receptor-like kinase receptors. Moreover, EGLN3 gene expression was upregulated in response to hypoxia only in M2(M-CSF) macrophages, and the hypoxia-mediated upregulation of EGLN3 expression was significantly impaired by activin A neutralization. These results indicate that EGLN3 gene expression in macrophages is dependent on activin A both under basal and hypoxic conditions and that the expression of the EGLN3-encoded PHD3 prolyl hydroxylase identifies proinflammatory macrophages in vivo and in vitro.  相似文献   
107.
Nat Cell Biol 14 4, 401–408 March042012The intestine represents the most vigorously renewing, adult epithelial tissue that makes maintenance of its homeostasis a delicate balance between proliferation, cell cycle arrest, migration, differentiation, and cell death. These processes are precisely controlled by a network of developmental signalling cascades, which include Wnt, Notch, BMP/TGFβ, and Hedgehog pathways. A new, elegant study by Wong et al (2012) now adds Lrig1 as a key player in the control of intestinal homeostasis. As for epidermal stem cells, Lrig1 limits the size of the intestinal progenitor compartment by dampening EGF/ErbB-triggered stem cell expansion.The epithelium of the small intestine is separated into two distinct compartments: a proliferative crypt, containing tissue-specific stem cells, and a villus with differentiated, short-lived cells, which are replenished by a constant stream of cell migration from the underlying crypt (Scoville et al, 2008). In particular, the canonical Wnt pathway in combination with Notch signals control stem cell maintenance and proliferation in the crypt. In addition, both pathways direct differentiation into the Paneth and the absorptive cell lineage, respectively. Intensive cross-talk between the epithelium and the underlying mesenchyme helps to define the crypt–villus boundary. This relies on epithelial-derived Hedgehog and Wnt ligands that trigger stromal BMP production, which in turn signals back to the epithelium to restrict proliferation to the crypt. A gradient of BMP antagonists produced by mesenchymal cells at the bottom of the crypts supports compartmentalization. In addition, a Wnt gradient in the crypt defines EphB expression and establishes repulsion-mediated separation into Paneth cell, proliferative, and differentiation zones along the crypt–villus axis (Figure 1A).Open in a separate windowFigure 1(A) The epithelium of the small intestine contains two populations of multipotent stem cells that reside at the bottom of the crypts. These give rise to transit-amplifying progenitors, which rapidly divide while migrating upwards. Cell cycle arrest and functional differentiation occur when these cells pass from the upper part of the crypt into the villus where they continue their upward movement until they finally undergo apoptosis. Only long-living Paneth cells follow a different path as they migrate downwards to populate the base of the crypt. Control of proliferation and lineage specification of all intestinal epithelial cells is directed in a self-organizing, dynamically regulated process based on cell–cell and cell–environment interactions. Among them, Wnt and Notch signalling have been defined as major determinants for stem cell maintenance, for proliferation of stem cells in the crypt and lineage specification. Epithelial-derived Hedgehog ligands and reciprocal stromal BMP ligands establish a connection between the epithelium and the stroma that regulates the crypt–villus boundary. In addition, repulsive interactions mediated by the Eph/ephrin family allow establishment of stable compartments. Importantly, ErbB signalling, which is partially suppressed by Lrig1 at the base of the crypt, is now shown to be a new key player in the control of stem and progenitor cell expansion. (B) Cross-talk of signalling pathways in intestinal homeostasis with an emphasis on ErbB signalling. A negative feedback loop via Lrig1 helps to fine-tune population size and proliferative activity of intestinal progenitor cells. Lrig1 has been identified as a direct target of Myc and is known to repress ErbB signalling. Myc itself is a main target of the ErbB and Wnt pathways implicated in intestinal stem and progenitor cell expansion. Moreover, Lrig1 has been found to promote BMP signalling, which interferes with intestinal proliferation by restricting AKT activation via PTEN.In the small intestine, two stem cell (SC) populations coexist: Lgr5+crypt base columnar cells (CBCs) that cycle every 24 h and are interspersed between Paneth cells, and slower dividing SCs concentrated above (around position +4 relative to the crypt bottom) the Lgr5+position (Takeda et al, 2011). The localization of these Hopx+mTert+slowly cycling SCs partly overlaps with that of quiescent cells, which show long-term label retention upon irradiation damage and pulse labelling with BrdU. Lgr5+CBCs are, however, dispensable (Tian et al, 2008) and can be replaced by the second stem cell population, which also shows greater activity during damage repair. The relationship between these two stem cell populations, which can reciprocally generate each other, and the mechanisms that govern quiescence are being elucidated. Importantly, leucine-rich repeats and Ig-like domains 1 (Lrig1), a transmembrane protein that interacts with ErbBs and promotes its degradation, has now been found to be enriched at the crypt base and in the progenitor compartment of the small intestine and colon (Wong et al, 2012). Lrig1 is highly expressed in Lgr5+, Musashi1+, Ascl2+, and Olfm4+CBCs, and shows an inverse relation to the pattern of activated, phosphorylated EGFR above the crypt base (Figure 1A). In line with these patterns, deletion of Lrig1 in the mouse causes a dramatic crypt expansion and increased numbers of CBCs, transit-amplifying and Paneth cells. Whether the increase of Paneth cells, which actually do not express Lrig1, is a secondary effect due to the progenitor expansion remains open. Importantly, reduction of EGFR signalling by pharmacological (Gefitinib) and genetic modulation (Egfrwa-2 mice) is able to partially normalize all Lrig1 phenotypes. These data establish EGF/ErbB signalling, as an important regulator of the crypt compartment, and suggest Lrig1 as a central control that dampens the expansion of stem cells during normal intestinal homeostasis.Lrig1 was initially identified in the skin and proposed to maintain epidermal stem cells in a quiescent state (Watt and Jensen, 2009). Lrig1 marks human interfollicular epidermal stem cells, which can give rise to all epithelial lineages including hair follicle cells in skin reconstitution assays. However, during normal homeostasis, these cells are only bipotent, contributing to the sebaceous gland and the interfollicular epidermis. In contrast to quiescent Lrig1+SCs in the skin, Lrig1+ intestinal SCs are rapidly dividing and Lrig1 appears to only reduce their proliferative capacity. However, similar to the situation in the skin, Lrig1 and EGF signalling may play an important role during damage repair. Earlier experiments analysed the phenotype of mice lacking major EGF family members (Egger et al, 1997; Troyer et al, 2001). While these mice display some duodenal lesions during normal homeostasis, further experiments established EGF signalling as a key protective component that ameliorates mucosal damage. It remains to be seen whether activation of intestinal SCs during damage repair involves mitigation of Lrig1 dampening.Lrig1 is known to repress ErbB signalling by mediating ubiquitinylation and degradation of activated receptors, thereby limiting the amplitude of EGF signalling (Watt and Jensen, 2009). Consequently, Lrig1 deletion in the intestine induced upregulation of EGFR, ErbB2, and ErbB3, promoting downstream activation of c-Myc within intestinal stem and progenitor cells (Wong et al, 2012). Importantly, Lrig1 is a direct Myc target gene, and thereby part of a negative feedback loop that helps to fine-tune the population size and proliferative activity of intestinal progenitor cells (Figure 1B).Since the rescue of the Lrig1−/− phenotype by EGFR deficiency was only partial (Wong et al, 2012), other mechanisms may contribute. Intriguingly, Lrig1 has been shown to promote BMP signalling by direct binding to Type I (ALK6) and Type II (ALK1, ALK2, ALK3, and ActRIB) BMP receptors (Gumienny et al, 2010). BMPR1A inactivation, deficiency of its downstream effector PTEN, and transgenic overexpression of the BMP inhibitor Noggin display crypt expansion and increased SC numbers. Inhibition of BMP signalling in these genetic models enhanced AKT activation and increased Wnt signalling, promoting proliferation and adenoma formation (Figure 1B; Scoville et al, 2008). Future work will reveal a potential involvement of BMP and Wnt signalling in the Lrig1 knockout phenotype.The ErbB pathway has been linked to inflammatory bowel disease, and progression and metastatic potential of colorectal cancer. EGFR inhibition blocks adenoma formation in preclinical models, and ErbB pathway inhibition is currently being evaluated in clinical trials with colorectal cancer patients, where promising results have been reported (Cunningham et al, 2004). In contrast, Lrig1 is expressed at low levels in several cancer types but is overexpressed in some prostate and colorectal tumours (Hedman and Henriksson, 2007). Given this heterogeneity, the Lrig1 function in tumours appears to be cell- and context-dependent. Due to early postnatal lethality of Lrig1 knockout mice, the exciting possibility that Lrig1 may act as an intestinal tumour suppressor could not be answered by the current study but clearly deserves further attention.  相似文献   
108.

Introduction

Patient age often limits the therapeutic efforts of the oncologist. The aim of this study was to determine whether chemotherapy is used less frequently in elderly women aged 65-69 years diagnosed with breast cancer, compared to younger women.

Methods

A retrospective study was performed including women greater than 65 years old who had localised breast cancer and were treated at a University Hospital. Patients were classified into two groups, 65-69 years old and ≥ 70 years old. The differences in patient characteristics, tumour characteristics, chemotherapy treatment and chemotherapy-associated toxicity were analysed in both groups.

Results

A total of 164 women, with an average age of 73.7 years, were included in this study. There were no significant differences in the characteristics of the patients or their tumours. However, 75% of women <70 years old were treated with chemotherapy compared to just 34% of the older women (P<.001). The resulting levels of toxicity were similar between age groups.

Conclusions

Women ≥ 70 years old were treated with chemotherapy less frequently, even though the features and tumour characteristics of the women, as well as the toxicity of the treatment, were similar to that in younger women.  相似文献   
109.
Tumor cell invasion is vital for cancer progression and metastasis. Adhesion, migration, and degradation of the extracellular matrix are important events involved in the establishment of cancer cells at a new site, and therefore molecular targets are sought to inhibit such processes. The effect of a plant proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on the adhesion, migration, and invasion of gastric cancer cells was the focus of this study. EcTI showed no effect on the proliferation of gastric cancer cells or fibroblasts but inhibited the adhesion, migration, and cell invasion of gastric cancer cells; however, EcTI had no effect upon the adhesion of fibroblasts. EcTI was shown to decrease the expression and disrupt the cellular organization of molecules involved in the formation and maturation of invadopodia, such as integrin β1, cortactin, neuronal Wiskott-Aldrich syndrome protein, membrane type 1 metalloprotease, and metalloproteinase-2. Moreover, gastric cancer cells treated with EcTI presented a significant decrease in intracellular phosphorylated Src and focal adhesion kinase, integrin-dependent cell signaling components. Together, these results indicate that EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathways.  相似文献   
110.
Warming has profound effects on biological rates such as metabolism, growth, feeding and death of organisms, eventually affecting their ability to survive. Using a nonlinear bioenergetic population-dynamic model that accounts for temperature and body-mass dependencies of biological rates, we analysed the individual and interactive effects of increasing temperature and nutrient enrichment on the dynamics of a three-species food chain. At low temperatures, warming counteracts the destabilizing effects of enrichment by both bottom-up (via the carrying capacity) and top-down (via biological rates) mechanisms. Together with increasing consumer body masses, warming increases the system tolerance to fertilization. Simultaneously, warming increases the risk of starvation for large species in low-fertility systems. This effect can be counteracted by increased fertilization. In combination, therefore, two main drivers of global change and biodiversity loss can have positive and negative effects on food chain stability. Our model incorporates the most recent empirical data and may thus be used as the basis for more complex forecasting models incorporating food-web structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号