首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2152篇
  免费   131篇
  2283篇
  2024年   7篇
  2023年   19篇
  2022年   31篇
  2021年   57篇
  2020年   29篇
  2019年   43篇
  2018年   61篇
  2017年   49篇
  2016年   65篇
  2015年   101篇
  2014年   99篇
  2013年   151篇
  2012年   182篇
  2011年   155篇
  2010年   110篇
  2009年   95篇
  2008年   146篇
  2007年   130篇
  2006年   114篇
  2005年   119篇
  2004年   83篇
  2003年   73篇
  2002年   82篇
  2001年   28篇
  2000年   23篇
  1999年   18篇
  1998年   31篇
  1997年   14篇
  1996年   13篇
  1995年   14篇
  1994年   8篇
  1993年   9篇
  1992年   12篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1985年   11篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1969年   1篇
排序方式: 共有2283条查询结果,搜索用时 0 毫秒
911.

Background and Objectives

Irregular and poor quality sleep is common in business process outsourcing (BPO) employees due to continuous shift working. The influence of this on the cardiac autonomic activity was investigated by the spectral analysis of heart rate variability (HRV).

Methods

36 night shift BPO employees (working from 22:00 to 06:00h) and 36 age and sex matched day shift BPO employees (working from 08:00 to 16:00h) were recruited for the study. Five minute electrocardiogram (ECG) was recorded in all the subjects. Heart rate variability was analyzed by fast Fourier transformation using RMS Vagus HRV software. The results were analyzed using Mann Whitney U test, Student t-test, Wilcoxon signed rank test and were expressed as mean ± SD.

Results

Sleepiness was significantly higher among night shift workers as measured by Epworth Sleepiness Scale (p<0.001). Night shift BPO employees were found to have a trend towards lower values of vagal parameters - HF power (ms2), and higher values of sympathovagal parameters like LF Power (ms2) and the LF/HF power (%) suggesting decreased vagal activity and sympathetic over activity, when compared to day shift employees. However, HRV parameters did not vary significantly between the day shift employees and night shift workers baseline values, and also within the night shift group.

Interpretation and Conclusion

Night shift working increased the heart rate and shifted the sympathovagal balance towards sympathetic dominance and decreased vagal parameters of HRV. This is an indicator of unfavorable change in the myocardial system, and thus shows increased risk of cardiovascular disease among the night shift employees.  相似文献   
912.
Ascochyta blight (AB), caused by Ascochyta rabiei (Pass.) Labr. (anamorph), is the most damaging disease of chickpea (Cicer arietinum L.) and is a serious biotic stress constraint for chickpea production. To understand the molecular diversity in A. rabiei populations of India, a total of 64 isolates collected from AB-infected chickpea plants from different agroclimatic regions in the North Western Plain Zone (NWPZ) of India were analyzed with 11 AFLP (amplified fragment length polymorphism) and 20 SSR (simple sequence repeat) markers. A total of 9 polymorphic AFLP primer pairs provided a total of 317 fragments, of which 130 were polymorphic and showed an average PIC value 0.28. Of the SSR markers, 12 showed polymorphism and provided a total of 29 alleles with an average PIC value 0.35. To the best of our knowledge, this is the first report on a comparison of AFLP and SSR diversity estimates in A. rabiei populations. The dendrogram developed based on AFLP and SSR data separately, as well as on the combined marker dataset, grouped the majority of AB isolates as per geographic regions. Model based population structure analysis revealed four distinct populations with varying levels of ancestral admixtures among 64 isolates studied. Interestingly, several AFLP primer combinations and SSR markers showed the locus/allele specific to AB isolates of certain regions, e.g., Hisar, Sriganganagar, Gurdaspur, and Sundarnagar. Genetic variability present in AB isolates of the NWPZ of India suggests the continuous monitoring of changes in A. rabiei population to anticipate the breakdown of AB resistance in chickpea cultivars grown in India.  相似文献   
913.
Three naturally occurring toxigenic strains (HB-36, G-50, and HB-33), one nontoxigenic strain (HB-20), and one ultraviolet light-induced toxinless mutant (G-50 Tox) of Pseudomonas phaseolicola were examined by dye-buoyant density equilibrium centrifugation for the presence of plasmid deoxyribonucleic acid. All strains contained plasmid deoxyribonucleic acid. Comparison of the plasmid deoxyribonucleic acid of different strains by agarose gel electrophoresis showed that strain G-50 harbored three plasmids, whereas the rest of the strains contained two plasmids each. Irrespective of their toxigenicity, all strains shared the large-sized first plasmid band, but differed with respect to other plasmids. Restriction endonuclease analyses of the plasmids indicated that a 22.50-megadalton plasmid was common to two of the toxigenic strains (HB-36 and G-50). However, strain HB-33, which is also toxigenic, contained a much smaller plasmid (4.23 megadaltons). It is hypothesized that this small plasmid may have arisen by a recombination event from a larger plasmid.  相似文献   
914.
Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery and green energy technology. These have led to much research on QD interactions with various physical, chemical and biological systems. For biological systems, research has focused on the biocompatibility/cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems and bioactive molecules might be used to alter the optoelectronic properties of QDs. Here, it is shown that these properties can be altered by reactive oxygen species (ROS) from chemotherapeutic media and biological cells following controlled changes in cellular activities. Using CdSe/ZnS core‐shell QDs, spectroscopic analysis of optically excited QDs with HL60, K562 and T98G cancer cell lines is performed. Our results show statistically significant (P < 0.0001) modulation of the fluorescence emission spectra of the QDs due to the ROS produced by common chemotherapeutic drugs, daunorubicin and doxorubicin and by cells following chemotherapy/radiotherapy. This optical modulation, in addition to assessing ROS generation, will possibly enhance applications of QDs in simultaneous diagnostic imaging and nanoparticle‐mediated drug delivery as well as simultaneous ROS assessment and radiosensitization for improved outcomes in cancer treatments. Reactive molecular species produced by biological cells and chemotherapeutic drugs can create electric fields that alter the photophysical properties of QDs, and this can be used for concurrent monitoring of cellular activities, while inducing changes in those cellular activities.   相似文献   
915.
The NOTCH pathway is an evolutionarily conserved signalling network, which is fundamental in regulating developmental processes in invertebrates and vertebrates (Gazave et al. in BMC Evol Biol 9:249, 2009). It regulates self-renewal (Butler et al. in Cell Stem Cell 6:251–264, 2010), differentiation (Auderset et al. in Curr Top Microbiol Immunol 360:115–134, 2012), proliferation (VanDussen et al. in Development 139:488–497, 2012) and apoptosis (Cao et al. in APMIS 120:441–450, 2012) of diverse cell types at various stages of their development. NOTCH signalling governs cell-cell interactions and the outcome of such responses is highly context specific. This makes it impossible to generalize about NOTCH functions as it stimulates survival and differentiation of certain cell types, whereas inhibiting these processes in others (Meier-Stiegen et al. in PLoS One 5:e11481, 2010). NOTCH was first identified in 1914 in Drosophila and was named after the indentations (notches) present in the wings of the mutant flies (Bigas et al. in Int J Dev Biol 54:1175–1188, 2010). Homologs of NOTCH in vertebrates were initially identified in Xenopus (Coffman et al. in Science 249:1438–1441, 1990) and in humans NOTCH was first identified in T-Acute Lymphoblastic Leukaemia (T-ALL) (Ellisen et al. in Cell 66:649–61, 1991). NOTCH signalling is integral in neurogenesis (Mead and Yutzey in Dev Dyn 241:376–389, 2012), myogenesis (Schuster-Gossler et al. in Proc Natl Acad Sci U S A 104:537–542, 2007), haematopoiesis (Bigas et al. in Int J Dev Biol 54:1175–1188, 2010), oogenesis (Xu and Gridley in Genet Res Int 2012:648207, 2012), differentiation of intestinal cells (Okamoto et al. in Am J Physiol Gastrointest Liver Physiol 296:G23–35, 2009) and pancreatic cells (Apelqvist et al. in Nature 400:877–881, 1999). The current review will focus on NOTCH signalling in normal and malignant blood cell production or haematopoiesis.  相似文献   
916.
917.
S100A13 is a member of the S100 protein family that is involved in the copper-dependent nonclassical secretion of signal peptideless proteins fibroblast growth factor 1 and interleukin 1 lpha. In this study, we investigate the effects of interplay of Cu2+ and Ca2+ on the structure of S100A13 using a variety of biophysical techniques, including multi-dimensional NMR spectroscopy. Results of the isothermal titration calorimetry experiments show that S100A13 can bind independently to both Ca2+ and Cu2+ with almost equal affinity (Kd in the micromolar range). Terbium binding and isothermal titration calorimetry data reveal that two atoms of Cu2+/Ca2+ bind per subunit of S100A13. Results of the thermal denaturation experiments monitored by far-ultraviolet circular dichroism, limited trypsin digestion, and hydrogen-deuterium exchange (using 1H-15N heteronuclear single quantum coherence spectra) reveal that Ca2+ and Cu2+ have opposite effects on the stability of S100A13. Binding of Ca2+ stabilizes the protein, but the stability of the protein is observed to decrease upon binding to Cu2+. 1H-15N chemical shift perturbation experiments indicate that S100A13 can bind simultaneously to both Ca2+ and Cu2+ and the binding of the metal ions is not mutually exclusive. The results of this study suggest that the Cu2+-binding affinity of S100A13 is important for the formation of the FGF-1 homodimer and the subsequent secretion of the signal peptideless growth factor through the nonclassical release pathway.  相似文献   
918.
Centaurea maculosa Lam. is a noxious weed in western North America that produces a phytotoxin, (±)-catechin, which is thought to contribute to its invasiveness. Areas invaded by C. maculosa often result in monocultures of the weed, however; in some areas, North American natives stand their ground against C. maculosa and show varying degrees of resistance to its phytotoxin. Two of these resistant native species, Lupinus sericeus Pursh and Gaillardia grandiflora Van Houtte, were found to secrete increased amounts of oxalate in response to catechin exposure. Mechanistically, we found that oxalate works exogenously by blocking generation of reactive oxygen species in susceptible plants and reducing oxidative damage generated in response to catechin. Furthermore, field experiments show that L. sericeus indirectly facilitates native grasses in grasslands invaded by C. maculosa, and this facilitation can be correlated with the presence of oxalate in soil. Addition of exogenous oxalate to native grasses and Arabidopsis thaliana (L.) Heynh grown in vitro alleviated the phytotoxic effects of catechin, supporting the field experiments and suggesting that root-secreted oxalate may also act as a chemical facilitator for plant species that do not secrete the compound.  相似文献   
919.
NDUFS3 is an integral subunit of the Q module of the mitochondrial respiratory Complex-I. The combined mutation (T145I + R199W) in the subunit is reported to cause optic atrophy and Leigh syndrome accompanied by severe Complex-I deficiency. In the present study, we have cloned and overexpressed the human NDUFS3 subunit and its double mutant in a soluble form in Escherichia coli. The wild-type (w-t) and mutant proteins were purified to homogeneity through a serial two-step chromatographic purification procedure of anion exchange followed by size exclusion chromatography. The integrity and purity of the purified proteins was confirmed by Western blot analysis and MALDI-TOF/TOF. The conformational transitions of the purified subunits were studied through steady state as well as time resolved fluorescence and CD spectroscopy under various denaturing conditions. The mutant protein showed altered polarity around tryptophan residues, changed quenching parameters and also noticeably altered secondary and tertiary structure compared to the w-t protein. Mutant also exhibited a higher tendency than the w-t protein for aggregation which was examined using fluorescent (Thioflavin-T) and spectroscopic (Congo red) dye binding techniques. The pH stability of the w-t and mutant proteins varied at extreme acidic pH and the molten globule like structure of w-t at pH1 was absent in case of the mutant protein. Both the w-t and mutant proteins showed multi-step thermal and Gdn-HCl induced unfolding. Thus, the results provide insight into the alterations of NDUFS3 protein structure caused by the mutations, affecting the overall integrity of the protein and finally leading to disruption of Complex-I assembly.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号