首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   64篇
  国内免费   2篇
  2023年   3篇
  2022年   3篇
  2021年   16篇
  2020年   4篇
  2019年   7篇
  2018年   10篇
  2017年   11篇
  2016年   24篇
  2015年   31篇
  2014年   41篇
  2013年   43篇
  2012年   58篇
  2011年   61篇
  2010年   39篇
  2009年   36篇
  2008年   44篇
  2007年   33篇
  2006年   38篇
  2005年   37篇
  2004年   23篇
  2003年   33篇
  2002年   28篇
  2001年   35篇
  2000年   24篇
  1999年   27篇
  1998年   6篇
  1996年   6篇
  1995年   5篇
  1994年   9篇
  1993年   4篇
  1992年   9篇
  1991年   7篇
  1990年   14篇
  1989年   10篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1983年   8篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1977年   5篇
  1976年   3篇
  1975年   11篇
  1974年   4篇
  1973年   5篇
  1971年   3篇
  1969年   2篇
  1967年   2篇
排序方式: 共有870条查询结果,搜索用时 218 毫秒
71.
Magnesium translocation across cell membranes is essential for numerous physiological processes. Three recently reported crystal structures of the CorA magnesium transport system revealed a surprising architecture, with a bundle of giant α-helices forming a 60-Å-long pore that extends beyond the membrane before widening into a funnel-shaped cytosolic domain. The presence of divalent cations in putative intracellular regulation sites suggests that these structures correspond to the closed conformation of CorA. To examine the nature of the conduction pathway, we performed 110-ns molecular-dynamics simulations of two of these structures in a lipid bilayer with and without regulatory ions. The results show that a 15-Å-long hydrophobic constriction straddling the membrane-cytosol interface constitutes a steric bottleneck whose location coincides with an electrostatic barrier opposing cation translocation. In one of the simulations, structural relaxation after the removal of regulatory ions led to concerted changes in the tilt of the pore helices, resulting in iris-like dilation and spontaneous hydration of the hydrophobic neck. This simple and robust mechanism is consistent with the regulation of pore opening by intracellular magnesium concentration, and explains the unusual architecture of CorA.  相似文献   
72.
The duplicated and the highly repetitive nature of the maize genome has historically impeded the development of true single nucleotide polymorphism (SNP) markers in this crop. Recent advances in genome complexity reduction methods coupled with sequencing-by-synthesis technologies permit the implementation of efficient genome-wide SNP discovery in maize. In this study, we have applied Complexity Reduction of Polymorphic Sequences technology (Keygene N.V., Wageningen, The Netherlands) for the identification of informative SNPs between two genetically distinct maize inbred lines of North and South American origins. This approach resulted in the discovery of 1,123 putative SNPs representing low and single copy loci. In silico and experimental (Illumina GoldenGate (GG) assay) validation of putative SNPs resulted in mapping of 604 markers, out of which 188 SNPs represented 43 haplotype blocks distributed across all ten chromosomes. We have determined and clearly stated a specific combination of stringent criteria (>0.3 minor allele frequency, >0.8 GenTrainScore and >0.5 Chi_test100 score) necessary for the identification of highly polymorphic and genetically stable SNP markers. Due to these criteria, we identified a subset of 120 high-quality SNP markers to leverage in GG assay-based marker-assisted selection projects. A total of 32 high-quality SNPs represented 21 haplotypes out of 43 identified in this study. The information on the selection criteria of highly polymorphic SNPs in a complex genome such as maize and the public availability of these SNP assays will be of great value for the maize molecular genetics and breeding community.  相似文献   
73.
In murine embryonic fibroblasts, N-acetyl-L-cysteine (NAC), a GSH generating agent, enhances hypoxic apoptosis by blocking the NFkappaB survival pathway (Qanungo, S., Wang, M., and Nieminen, A. L. (2004) J. Biol. Chem. 279, 50455-50464). Here, we examined sulfhydryl modifications of the p65 subunit of NFkappaB that are responsible for NFkappaB inactivation. In MIA PaCa-2 pancreatic cancer cells, hypoxia increased p65-NFkappaB DNA binding and NFkappaB transactivation by 2.6- and 2.8-fold, respectively. NAC blocked these events without having an effect on p65-NFkappaB protein levels and p65-NFkappaB nuclear translocation during hypoxia. Pharmacological inhibition of the NFkappaB pathway also induced hypoxic apoptosis, indicating that the NFkappaB signaling pathway is a major protective mechanism against hypoxic apoptosis. In cell lysates after hypoxia and treatment with N-ethylmaleimide (thiol alkylating agent), dithiothreitol (disulfide reducing agent) was not able to increase binding of p65-NFkappaB to DNA, suggesting that most sulfhydryls in p65-NFkappaB protein were in reduced and activated forms after hypoxia, thereby being blocked by N-ethylmaleimide. In contrast, with hypoxic cells that were also treated with NAC, dithiothreitol increased p65-NFkappaB DNA binding. Glutaredoxin (GRx), which specifically catalyzes reduction of protein-SSG mixed disulfides, reversed inhibition of p65-NFkappaB DNA binding in extracts from cells treated with hypoxia plus NAC and restored NFkappaB activity. This finding indicated that p65-NFkappaB-SSG was formed in situ under hypoxia plus NAC conditions. In cells, knock-down of endogenous GRx1, which also promotes protein glutathionylation under hypoxic radical generating conditions, prevented NAC-induced NFkappaB inactivation and hypoxic apoptosis. The results indicate that GRx-dependent S-glutathionylation of p65-NFkappaB is most likely responsible for NAC-mediated NFkappaB inactivation and enhanced hypoxic apoptosis.  相似文献   
74.
Older adults are more likely than young to fall upon a loss of balance, yet the factors responsible for this difference are not well understood. This study investigated whether age-related differences in movement stability, limb support, and protective stepping contribute to the greater likelihood of falling among older adults. Sixty young and 41 older, safety-harnessed, healthy adults were exposed to a novel and unexpected forward slip during a sit-to-stand task. More older than young adults fell (76% vs. 30%). Falls in both age groups were related to lesser stability and lower hip height at first step touchdown, with 97.1% of slip outcomes correctly classified based on these variables. Decreases in hip height at touchdown had over 20 times greater effect on the odds of falling than equivalent decreases in stability. Three age differences placed older adults at greater risk of falling: older adults had lower and more slowly rising hips at slip onset, they were less likely to respond to slipping with ample limb support, and they placed their stepping foot less posterior to their center of mass. The first two differences, each associated with deficient limb support, reduced hip ascent and increased hip descent. The third difference resulted in lesser stability at step touchdown. These results suggest that deficient limb support in normal movement patterns and in the reactive response to a perturbation is a major contributor to the high incidence of falls in older adults. Improving proactive and reactive limb support should be a focus of fall prevention efforts.  相似文献   
75.
Sequence variation in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) oncogene structure may affect antigen-presenting cell (APC) function of infected B cells and immune escape by EBV-specific T cells and thus contribute to the development of malignancy. Normal B cell-associated LMP1 (B-LMP1) upregulates B cell APC function through activation of the necrosis factor (NF)-kappaB subunit, RelB. We examined the ability of B-LMP1 and a nasopharyngeal carcinoma-associated LMP1 (NPC-LMP1) to modulate B cell APC function and T-cell responses. B lymphoma cells transfected with NPC-LMP1 stimulated resting T cells in mixed lymphocyte reaction less efficiently than B-LMP1 transfectants. Unexpectedly, antigen presentation to CD4(+) T helper cells was reduced owing to potentiation of regulatory T-cell function by NPC-LMP1 transfectants, which produce increased levels of interleukin-10, rendering CD4(+) T cells hyporesponsive. Thus, after primary EBV infection, T cells may escape activation by NPC-LMP1. These observations have important implications for the establishment of EBV-associated malignancy in the context of infection with tumour-associated EBV LMP1 variants.  相似文献   
76.
77.
【目的】研究固氮施氏假单胞菌(Pseudomonas stutzeri)A1501亚硝酸盐还原酶结构基因nir S的转录调控机制及其在反硝化过程中的功能。【方法】构建nir S-lac Z融合载体,利用三亲本结合法将其导入野生型A1501,通过β-半乳糖苷酶活性的测定,分析不同供氧状况、不同浓度的硝酸盐、亚硝酸盐对nir S基因表达的影响;同时将该载体导入rpo N突变株中,研究氮代谢调控因子Rpo N对nir S基因转录影响。通过同源重组方法构建nir S突变株,通过生化表型测定明确nir S在反硝化过程中的功能。【结果】启动子活性测定表明,nir S基因厌氧条件下高水平表达,是好氧条件下表达水平的4倍;nir S的表达受硝酸盐诱导,但不受亚硝酸盐的诱导;Rpo N突变株中,nir S的表达活性为野生型的1/4,nir S启动子未发现Rpo N的保守结合位点,表明nir S的表达受Rpo N间接调控。表型测定显示以硝酸盐为电子受体时Δnir S的反硝化能力降低了约20%;以亚硝酸盐为电子受体时Δnir S仅有微弱的反硝化能力,并且nir S的突变使得菌体在反硝化条件下利用亚硝酸盐的能力显著减弱。nir S突变提高了菌体在亚硝酸为电子受体的反硝化条件下的固氮酶活。【结论】A1501中nir S基因的转录受外界氧及硝酸盐的影响,同时受氮代谢Sigma因子Rpo N的调控。nir S在A1501菌反硝化过程中起关键作用,参与了亚硝酸盐的转化。  相似文献   
78.
79.
80.
COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, β-, β′-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The β′-, γ-, and δ-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of β′-, γ-, and δ-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of β′-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号