首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   62篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   4篇
  2019年   7篇
  2018年   10篇
  2017年   11篇
  2016年   24篇
  2015年   30篇
  2014年   40篇
  2013年   42篇
  2012年   57篇
  2011年   61篇
  2010年   36篇
  2009年   33篇
  2008年   44篇
  2007年   31篇
  2006年   36篇
  2005年   32篇
  2004年   21篇
  2003年   33篇
  2002年   28篇
  2001年   35篇
  2000年   24篇
  1999年   27篇
  1998年   5篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   9篇
  1991年   6篇
  1990年   14篇
  1989年   11篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1983年   8篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1977年   4篇
  1976年   3篇
  1975年   10篇
  1974年   4篇
  1973年   5篇
  1971年   3篇
  1969年   2篇
  1967年   2篇
排序方式: 共有841条查询结果,搜索用时 15 毫秒
121.
122.
Although it is established that growth factors and prostaglandins function in the maintenance of gastric mucosal integrity and in the healing of gastric mucosal injury and ulceration, the regulatory relationship between growth factors and prostaglandins in the gastric mucosa is not well characterized. Therefore, we investigated whether hepatocyte growth factor (HGF) affects expression of COX-2 (the inducible form of the prostaglandin synthesizing enzyme, cyclooxygenase) in gastric epithelial cells and whether this action is mediated through the MAP (ERK) kinase signaling pathway. In RGM1 cells (an epithelial cell line derived from normal rat gastric mucosa), HGF caused an increase in COX-2 mRNA and protein by 236% and 175%, respectively (both P<0.05). This induction of COX-2 expression was abolished by pretreatment with the MAPK kinase (MEK) inhibitor PD98059. HGF also triggered a 13-fold increase in c-Met/HGF receptor phosphorylation (P<0.005) and increased ERK2 activity by 684% (P<0.01). Pretreatment with PD98059 abolished the HGF-induced increase in ERK2 activity, but not c-Met/HGF receptor phosphorylation. The specific inhibitor of p38 MAP kinase, SB203580, had no effect on HGF-induced COX-2 expression. Thus, HGF triggers activation of the COX-2 gene in gastric epithelial cells through phosphorylation of c-Met/HGF receptor and activation of the ERK2 signaling pathway.-Jones, M. K., Sasaki, E., Halter, F., Pai, R., Nakamura, T., Arakawa, T., Kuroki, T., Tarnawski, A. S. HGF triggers activation of the COX-2 gene in rat gastric epithelial cells: action mediated through the ERK2 signaling pathway.  相似文献   
123.
Previously, we reported that mitochondria-associated hexokinases are active in controlling programmed cell death in plants (Plant Cell 18, 2341-2355). Here, we investigated their role under abiotic- and biotic-stress conditions. Expression ofNbHxk1, aNicotiana benthamiana hexokinase gene, was stimulated by treatment with salicylic acid or methyl viologen (MV), and was also up-regulated by pathogen infection. In response to MV-induced oxidative stress, NbHxk1-silenced plants exhibited increased susceptibility, while the HXK1— and HXK2-overexpressingArabidopsis plants had enhanced tolerance. Moreover, those overexpressing plants showed greater resistance to the necrotrophic fungal pathogenAlternaria brassicicola. HXK-over-expression also mildly protected plants against the bacterial pathogenPseudomonas syringae pv.tomato DC3000, a response that was accompanied by increased H2O2 production and elevatedPR1 gene expression. These results demonstrate that higher levels of hexokinase confer improved resistance to MV-induced oxidative stress and pathogen infection.  相似文献   
124.
125.
Phyllanthus niruri extract is extensively used in treating liver ailments. Effects of aqueous extract of P. niruri on liver, kidney and testes of CCl4 induced hepatotoxic rats were studied. High levels of malondialdehyde (MDA) were observed in the CCl4 test group with significant reduction of MDA levels in all groups on P. niruri extract administration. Highest levels of glutathione (GSH) were found in P. niruri group. Activities of alanine transaminase, aspartate transaminase and alkaline phosphatase enzymes were significantly reduced in the curative group (P. niruri treatment after CCl4 injection). Histopathology of liver showed lesser degree of inflammation in all P. niruri treated groups while the renal and seminiferous tubules showed eosinophilic protein casts with signs of tubular damage and degeneration. Testes also showed decreased amount of mature spermatozoa. The results suggest that P. niruri has anti-oxidant and hepato-protective activity with associated deleterious effects on kidney and testes.  相似文献   
126.
In the present study, we investigated the effects of a treadmill exercise on serum glucose levels and Ki67 and doublecortin (DCX) immunoreactivity, which is a marker of cell proliferation expressed during cell cycles except G0 and early G1 and a marker of progenitors differentiating into neurons, respectively, in the subgranular zone of the dentate gyrus (SZDG) using a type II diabetic model. At 6 weeks of age, Zucker lean control (ZLC) and Zucker diabetic fatty (ZDF) rats were put on a treadmill with or without running for 1 h/day/5 consecutive days at 22 m/min for 5 weeks. Body weight was significantly increased in the control (without running)-ZDF rats compared to that in the other groups. In the control groups blood glucose levels were increased by 392.7 mg/dl in the control-ZDF rats and by 143.3 mg/dl in the control-ZLC rats. However, in the exercise groups, blood glucose levels were similar between the exercise-ZLC and ZDF rats: The blood glucose levels were 110.0 and 118.2 mg/dl, respectively. Ki67 positive nuclei were detected in the SZDG in control and exercise groups. The number of Ki67 positive nuclei was significantly high in exercise groups compared to that in the control groups. In addition, Ki67 positive cells were abundant in ZLC groups compared to those in ZDF groups. DCX-immunoreactive structures in the control-ZDF rats were lower than that in the control-ZLC rats. In the exercise groups, DCX-immunoreactive structures (somata and processes with tertiary dendrites) and DCX protein levels were markedly increased in both the exercise-ZLC and ZDF rats compared to that in the control groups. These results suggest that a treadmill exercise reduces blood glucose levels in ZDF rats and increases cell proliferation and differentiation in the SZDG in ZLC and ZDF rats compared to those in control groups.  相似文献   
127.
To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low n M range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (Fv/Fm) was reduced from 0.83 in Mn-sufficient control plants to below 0.5 in Mn-starved plants. Leaf Mn concentrations declined from 30 to 7 μg Mn g−1 dry weight in control and Mn-starved plants, respectively. Mn-starved plants had up to four-fold higher transpiration than control plants. Stomatal closure and opening upon light/dark transitions took place at the same rate in both Mn treatments, but the nocturnal leaf conductance for water vapour was still twice as high in Mn-starved plants compared with the control. The observed increase in transpiration was substantiated by 13C-isotope discrimination analysis and gravimetric measurement of the water consumption, showing significantly lower water use efficiency in Mn-starved plants. The extractable wax content of leaves of Mn-starved plants was approximately 40% lower than that in control plants, and it is concluded that the increased leaf conductance and higher transpirational water loss are correlated with a reduction in the epicuticular wax layer under Mn deficiency.  相似文献   
128.
Spirocyclic secondary amine-derived trisubstituted ureas were identified as highly potent, bioavailable and selective soluble epoxide hydrolase (sEH) inhibitors. Despite good oral exposure and excellent ex vivo target engagement in blood, one such compound, rac-1a, failed to lower blood pressure acutely in spontaneously hypertensive rats (SHRs). This study posed the question as to whether sEH inhibition provides a robust mechanism leading to a significant antihypertensive effect.  相似文献   
129.
CDC48 is a member of the AAA ATPase superfamily. Yeast CDC48 and its mammalian homolog p97 are implicated in diverse cellular processes, including mitosis, membrane fusion, and ubiquitin-dependent protein degradation. However, the cellular functions of plant CDC48 proteins are largely unknown. In the present study, we performed virus-induced gene silencing (VIGS) screening and found that silencing of a gene encoding a tobacco CDC48 homolog, NgCDC48, resulted in severe abnormalities in leaf and shoot development in tobacco. Furthermore, transgenic tobacco plants (35S:anti-NgCDC48), in which the NgCDC48 gene was suppressed using the antisense RNA method, exhibited severely aberrant development of both vegetative and reproductive organs, resulting in arrested shoot and leaf growth and sterile flowers. Approximately 57–83% of 35S:anti-NgCDC48 plants failed to develop mature organs and died at early stage of development. Scanning electron microscopy showed that both adaxial and abaxial epidermal pavement cells in antisense transgenic leaves were significantly smaller and more numerous than those in wild type leaves. These results indicate that NgCDC48 is critically involved in cell growth and development of tobacco plants. An in vivo targeting experiment revealed that NgCDC48 resides in the endoplasmic reticulum (ER) in tobacco protoplasts. We consider the tantalizing possibility that CDC48-mediated degradation of an as-yet unidentified protein(s) in the ER might be a critical step for cell growth and expansion in tobacco leaves.  相似文献   
130.
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab′. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate''s negative charge, the hydrophobic alkyl-π stacking arrangement between the β-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.Eliciting broadly neutralizing antibodies (bnAbs) against primary isolates of human immunodeficiency virus type I (HIV-1) has been identified as a major milestone to attain in the quest for a vaccine in the fight against AIDS (12, 28). These antibodies would need to interact with HIV-1 envelope glycoproteins gp41 and/or gp120 (Env), target conserved regions and functional conformations of gp41/gp120 trimeric complexes, and prevent new HIV-1 fusion events with target cells (21, 57, 70, 71). Although a humoral response generating neutralizing antibodies against HIV-1 can be detected in HIV-1-positive individuals, the titers are often very low, and virus control is seldom achieved by these neutralizing antibodies (22, 51, 52, 66, 67). The difficulty in eliciting a broad and potent neutralizing antibody response against HIV-1 is thought to reside in the high degree of genetic diversity of the virus, in the heterogeneity of Env on the surface of HIV-1, and in the masking of functional regions by conformational covering, by an extensive glycan shield, or by the ability of some conserved domains to partition to the viral membrane (24, 25, 29, 30, 38, 39, 56, 68, 69). So far, vaccine trials using as immunogens mimics of Env in different conformations have primarily elicited antibodies with only limited neutralization potency across different HIV-1 clades although recent work has demonstrated more encouraging results (4, 12, 61).The use of conserved regions on gp41 and gp120 Env as targets for vaccine design has been mostly characterized by the very few anti-HIV-1 broadly neutralizing monoclonal antibodies (bnMAbs) that recognize them: the CD4 binding-site on gp120 (bnMAb b12), a CD4-induced gp120 coreceptor binding site (bnMAbs 17b and X5), a mannose cluster on the outer face of gp120 (bnMAb 2G12), and the membrane proximal external region (MPER) of gp41 (bnMAbs 2F5, Z13 and 4E10) (13, 29, 44, 58, 73). The gp41 MPER region is a particularly conserved part of Env that spans residues 659 to 683 (HXB2 numbering) (37, 75). Substitution and deletion studies have linked this unusually tryptophan-rich region to the fusion process of HIV-1, possibly involving a series of conformational changes (5, 37, 41, 49, 54, 74). Additionally, the gp41 MPER has been implicated in gp41 oligomerization, membrane leakage ability facilitating pore formation, and binding to the galactosyl ceramide receptor on epithelial cells for initial mucosal infection mediated by transcytosis (2, 3, 40, 53, 63, 64, 72). This wide array of roles for the gp41 MPER will put considerable pressure on sequence conservation, and any change will certainly lead to a high cost in viral fitness.Monoclonal antibody 2F5 is a broadly neutralizing monoclonal anti-HIV-1 antibody isolated from a panel of sera from naturally infected asymptomatic individuals. It reacts with a core gp41 MPER epitope spanning residues 662 to 668 with the linear sequence ELDKWAS (6, 11, 42, 62, 75). 2F5 immunoglobulin G binding studies and screening of phage display libraries demonstrated that the DKW core is essential for 2F5 recognition and binding (15, 36, 50). Crystal structures of 2F5 with peptides representing its core gp41 epitope reveal a β-turn conformation involving the central DKW residues, flanked by an extended conformation and a canonical α-helical turn for residues located at the N terminus and C terminus of the core, respectively (9, 27, 45, 47). In addition to binding to its primary epitope, evidence is accumulating that 2F5 also undergoes secondary interactions: multiple reports have demonstrated affinity of 2F5 for membrane components, possibly through its partly hydrophobic flexible elongated complementarity-determining region (CDR) H3 loop, and it has also been suggested that 2F5 might interact in a secondary manner with other regions of gp41 (1, 10, 23, 32, 33, 55). Altogether, even though the characteristics of 2F5 interaction with its linear MPER consensus epitope have been described extensively, a number of questions persist about the exact mechanism of 2F5 neutralization at a molecular level.One such ambiguous area of the neutralization mechanism of 2F5 is investigated in this study. Indeed, compared to bnMAb 4E10, 2F5 is the more potent neutralizing antibody although its breadth across different HIV-1 isolates is more limited (6, 35). In an attempt to shed light on the exact molecular requirements for 2F5 recognition of its primary gp41 MPER epitope, we performed structural studies of 2F5 Fab′ with a variety of peptides. The remarkable breadth of possible 2F5 interactions reveals a somewhat surprising promiscuity of the 2F5 binding site. Furthermore, we link our structural observations with the natural variation observed within the gp41 MPER and discuss possible routes of 2F5 escape from a molecular standpoint. Finally, our discovery of 2F5''s ability to tolerate a rather broad spectrum of amino acids in its binding, a spectrum that even includes nonnatural amino acids, opens the door to new ways to design small-molecule immunogens potentially capable of eliciting 2F5-like neutralizing antibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号