首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   12篇
  2011年   6篇
  2010年   3篇
  2009年   12篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1989年   1篇
  1986年   2篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
11.
A rapid separation of the ten nuclearly-encoded subunits of mitochondrial cytochrome c oxidase, and ten out of the eleven subunits of cytochrome bc1, was achieved using a short, 50 mm C18-reversed-phase column. The short column decreased the elution time 4–7 fold while maintaining the same resolution quality. Elution was similar to a previously published protocol, i.e., a water/acetonitrile elution gradient containing trifluoroacetic acid. Isolated subunits were identified by MALDI-TOF. The rapidity of the described method makes it extremely useful for determining the subunit composition of isolated mitochondrial complexes. The method can be used for both analytical and micro-preparative purposes.  相似文献   
12.
A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.  相似文献   
13.
Outer surface protein C (OspC) of Borrelia stimulates remarkable immune responses during early infection and is therefore currently considered a leading diagnostic and vaccine candidate. The sensitivity and specificity of serological tests based on whole protein OspC for diagnosis of Lyme disease are still unsatisfactory. Minimal B‐cell epitopes are key in the development of reliable immunodiagnostic tools. Using OspC fragments displayed on phage particles (phage library) and anti‐OspC antibodies isolated from sera of naturally infected patients, six OspC epitopes capable of distinguishing between LD patient and healthy control sera were identified. Three of these epitopes are located at the N‐terminus (OspC E1 aa19–27, OspC E2 aa38–53, OspC E3 aa62–66) and three at the C‐terminal end (OspC E4 aa155–163, OspC E5 aa184–190 and OspC E6 aa201–207). OspC E1, E4 and E6 were highly conserved among LD related Borreliae. To our knowledge, epitopes OspC E2, E3 and E5 were identified for the first time in this study. Minimal B‐cell epitopes may provide fundamental data for the development of multi‐epitope‐based diagnostic tools for Lyme disease.  相似文献   
14.
Summary The depressed natural killer (NK) activity, antibody-dependent cellular cytotoxicity (ADCC) and NK cytotoxic factor cytotoxicity in untreated non-Hodgkin's lymphoma patients were found to be elevated after chemotherapy. In vitro treatment of the effector NK cells with interferon could augment the NK activity in normal subjects and treated patients to a comparable degree. Chemotherapy mainly affected the post-binding events in the NK cytotoxic process by causing an increase in the active killing potential of the NK cells. This study provides a better understanding of changes in the NK cytotoxic mechanism in non-Hodgkin's lymphoma patients and the role of interferon in this process.B. A. Mehta is a recipient of the Lady Tata Memorial Trust, India, Senior Scholarship  相似文献   
15.
Indoxacarb, an oxadiazine insecticide, was evaluated for its effectiveness against Helicoverpa armigera collected from selected locations in India. Determination of Indoxacarb efficacy was done using a log-dose probit (LDP) bioassay against third instars collected from cotton ( Gossypium arborium ) fields near Akola, India. Monthly levels of toxicity of Indoxacarb were determined from July 2005 to March 2007. The maximum tolerance level of Indoxacarb was reported for the Amaravati strain (5.09 p.p.m.) and the minimum tolerance level for the Fatehbad strain (0.22 p.p.m.). Seasonal monitoring of Indoxacarb toxicity revealed an increased trend in tolerance from July 2005 to February 2006, which decreased from March 2006. The LC50 of Indoxacarb was 2.71 p.p.m. in July 2005 and 17.14 p.p.m. in February 2006. During 2006–2007, the LC50 was 3.84 p.p.m. at the start of the season and in March 2007 it was 13.51 p.p.m. The minimum LC50 of Indoxacarb was reported for H. armigera larvae fed on Legasca spp. (1.62 p.p.m.) and the maximum LC50 was reported for H. armigera reared on chickpea ( Cicer arietium ) (8.45 p.p.m.). LC50 of 2.73 and 4.56 p.p.m. were reported for H. armigera fed on cotton ( Gossypium arborium ) and pigeonpea ( Cajanus cajan ), respectively.  相似文献   
16.
A novel and more comprehensive formulation of the optimal control problem that reflects the operational requirements of a typical industrial fermentation has been proposed in this work. This formulation has been applied to a fed-batch bioreactor with three control variables, i.e., feed rates of carbon source, nitrogen source, and an oxygen source, to result in a 148.7% increase in product formation. Xanthan gum production using Xanthomonas campestris has been used as the model system for this optimization study, and the liquid-phase oxygen supply strategy has been used to supply oxygen to the fermentation. The formulated optimization problem has several constraints associated with it due to the nature of the system. A robust stochastic technique, differential evolution, has been used to solve this challenging optimization problem. The infinite dimensional optimization problem has been approximated to a finite dimensional one by control vector parametrization. The state constraints that are path constraints have been addressed by using penalty functions and by integrating them over the total duration to ensure a feasible solution. End point constraints on final working volume of the reactor and on the final residual concentrations of carbon and nitrogen sources have been included in the problem formulation. Further, the toxicity of the oxygen source, H(2)O(2), has been addressed by imposing a constraint on its maximum usable concentration. In addition, the initial volume of the bioreactor contents and feed concentrations have been handled as decision variables, which has enabled a well-grounded choice for their values from the optimization procedure; adhoc values are normally used in the industry. All results obtained by simulation have been validated experimentally with good agreements between experimental and simulated values.  相似文献   
17.
β-Lactamases are the major reason β-lactam resistance is seen in Gram-negative bacteria. To combat this resistance mechanism, β-lactamase inhibitors are currently being developed. Presently, there are only three that are in clinical use (clavulanate, sulbactam and tazobactam). In order to address this important medical need, we explored a new inhibition strategy that takes advantage of a long-lived inhibitory trans-enamine intermediate. SA2-13 was previously synthesized and shown to have a lower k react than tazobactam. We investigated here the importance of the carboxyl linker length and composition by synthesizing three analogs of SA2-13 (PSR-4-157, PSR-4-155, and PSR-3-226). All SA2-13 analogs yielded higher turnover numbers and k react compared to SA2-13. We next demonstrated using protein crystallography that increasing the linker length by one carbon allowed for better capture of a trans-enamine intermediate; in contrast, this trans-enamine intermediate did not occur when the C2 linker length was decreased by one carbon. If the linker was altered by both shortening it and changing the carboxyl moiety into a neutral amide moiety, the stable trans-enamine intermediate in wt SHV-1 did not form; this intermediate could only be observed when a deacylation deficient E166A variant was studied. We subsequently studied SA2-13 against a relatively recently discovered inhibitor-resistant (IR) variant of SHV-1, SHV K234R. Despite the alteration in the mechanism of resistance due to the K→R change in this variant, SA2-13 was effective at inhibiting this IR enzyme and formed a trans-enamine inhibitory intermediate similar to the intermediate seen in the wt SHV-1 structure. Taken together, our data reveals that the C2 side chain linker length and composition profoundly affect the formation of the trans-enamine intermediate of penam sulfones. We also show that the design of SA2-13 derivatives offers promise against IR SHV β-lactamases that possess the K234R substitution.  相似文献   
18.
Prion-induced diseases are a global health concern. The lack of effective therapy and 100 % mortality rates for such diseases have made the prion protein an important target for drug discovery. Previous NMR experimental work revealed that thiamine and its derivatives bind the prion protein in a pocket near the N-terminal loop of helix 1, and conserved intermolecular interactions were noted between thiamine and other thiamine-binding proteins. Furthermore, water-mediated interactions were observed in all of the X-ray crystallographic structures of thiamine-binding proteins, but were not observed in the thiamine–prion NMR study. To better understand the potential role of water in thiamine–prion binding, a docking study was employed using structural X-ray solvent. Before energy minimization, docked thiamine assumed a “V” shape similar to some of the known thiamine-dependent proteins. Following minimization with NMR-derived restraints, the “F” conformation was observed. Our findings confirmed that water is involved in ligand stabilization and phosphate group interaction. The resulting refined structure of thiamine bound to the prion protein allowed the 4-aminopyrimidine ring of thiamine to π-stack with Tyr150, and facilitated hydrogen bonding between Asp147 and the amino group of 4-aminopyrimidine. Investigation of the π-stacking interaction through mutation of the tyrosine residue further revealed its importance in ligand placement. The resulting refined structure is in good agreement with previous experimental restraints, and is consistent with the pharmacophore model of thiamine-binding proteins.  相似文献   
19.
Traversal of pathogen across the blood-brain barrier (BBB) is an essential step for central nervous system (CNS) invasion. Pathogen traversal can occur paracellularly, transcellularly, and/or in infected phagocytes (Trojan horse mechanism). To trigger the translocation processes, mainly through paracellular and transcellular ways, interactions between protein molecules of pathogen and BBB are inevitable. Simply, it takes two to tango: both host receptors and pathogen ligands. Underlying molecular basis of BBB translocation of various pathogens has been revealed in the last decade, and a plethora of experimental data on protein-protein interactions has been created. This review compiles these data and should give insights into the ligand-receptor interactions that occur during BBB translocation. Further, it sheds light on cell signaling events triggered in response to ligand-receptor interaction. Understanding of the molecular principles of pathogen-host interactions that are involved in traversal of the BBB should contribute to develop new vaccine and drug strategies to prevent CNS infections.  相似文献   
20.
In order to evaluate the importance of a hydrogen-bond donating substituent in the design of β-lactamase inhibitors, a series of C6-substituted penicillin sulfones, lacking a C2′ substituent, and having an sp3 hybridized C6, was prepared and evaluated against a representative classes A and C β-lactamases. It was found that a C6 hydrogen-bond donor is necessary for good inhibitory activity, but that this feature alone is not sufficient in this series of C6β-substituted penicillin sulfones. Other factors which may impact the potency of the inhibitor include the steric bulk of the C6 substituent (e.g., methicillin sulfone) which may hinder recognition in the class A β-lactamases, and also high similarity to the natural substrates (e.g., penicillin G sulfone) which may render the prospective inhibitor a good substrate of both classes of enzyme. The best inhibitors had non-directional hydrogen-bonding substituents, such as hydroxymethyl, which may allow sufficient conformational flexibility of the acyl-enzyme for abstraction of the C6 proton by E166 (class A), thus promoting isomerization to the β-aminoacrylate as a stabilized acyl-enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号