首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   15篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   6篇
  2018年   7篇
  2017年   9篇
  2016年   11篇
  2015年   17篇
  2014年   24篇
  2013年   15篇
  2012年   27篇
  2011年   20篇
  2010年   17篇
  2009年   15篇
  2008年   14篇
  2007年   9篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   8篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1993年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1965年   2篇
  1962年   1篇
  1955年   1篇
  1952年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有282条查询结果,搜索用时 218 毫秒
131.

Background

Caesarean section (CS) rates are rising worldwide. In the Netherlands, the most significant rise is observed in healthy women with a singleton in vertex position between 37 and 42 weeks gestation, whereas it is doubtful whether an improved outcome for the mother or her child was obtained. It can be hypothesized that evidence-based guidelines on CS are not implemented sufficiently. Therefore, the present study has the following objectives: to develop quality indicators on the decision to perform a CS based on key recommendations from national and international guidelines; to use the quality indicators in order to gain insight into actual adherence of Dutch gynaecologists to guideline recommendations on the performance of a CS; to explore barriers and facilitators that have a direct effect on guideline application regarding CS; and to develop, execute, and evaluate a strategy in order to reduce the CS incidence for a similar neonatal outcome (based on the information gathered in the second and third objectives).

Methods

An independent expert panel of Dutch gynaecologists and midwives will develop a set of quality indicators on the decision to perform a CS. These indicators will be used to measure current care in 20 hospitals with a population of 1,000 women who delivered by CS, and a random selection of 1,000 women who delivered vaginally in the same period. Furthermore, by interviewing healthcare professionals and patients, the barriers and facilitators that may influence the decision to perform a CS will be measured. Based on the results, a tailor-made implementation strategy will be developed and tested in a controlled before-and-after study in 12 hospitals (six intervention, six control hospitals) with regard to effectiveness, experiences, and costs.

Discussion

This study will offer insight into the current CS care and into the hindering and facilitating factors influencing obstetrical policy on CS. Furthermore, it will allow definition of patient categories or situations in which a tailor-made implementation strategy will most likely be meaningful and cost effective, without negatively affecting the outcome for mother and child.

Trial registration

http://www.clinicaltrials.gov: NCT01261676  相似文献   
132.
The phosphate-dependent transition between enzymatically inert dimers into catalytically capable tetramers has long been the accepted mechanism for the glutaminase activation. Here, we demonstrate that activated glutaminase C (GAC) self-assembles into a helical, fiber-like double-stranded oligomer and propose a molecular model consisting of seven tetramer copies per turn per strand interacting via the N-terminal domains. The loop 321LRFNKL326 is projected as the major regulating element for self-assembly and enzyme activation. Furthermore, the previously identified in vivo lysine acetylation (Lys311 in humans, Lys316 in mouse) is here proposed as an important down-regulator of superoligomer assembly and protein activation. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a known glutaminase inhibitor, completely disrupted the higher order oligomer, explaining its allosteric mechanism of inhibition via tetramer stabilization. A direct correlation between the tendency to self-assemble and the activity levels of the three mammalian glutaminase isozymes was established, with GAC being the most active enzyme while forming the longest structures. Lastly, the ectopic expression of a fiber-prone superactive GAC mutant in MDA-MB 231 cancer cells provided considerable proliferative advantages to transformed cells. These findings yield unique implications for the development of GAC-oriented therapeutics targeting tumor metabolism.  相似文献   
133.

Abstract  

Itraconazole is currently used for the treatment of cutaneous sporotrichosis. Terbinafine at a daily dose of 250 mg has been successfully applied to the treatment of cutaneous sporotrichosis.  相似文献   
134.

Background

Hookworms infect millions of people worldwide and can cause severe clinical symptoms in their hosts. Prospective cohort studies in Brazil show high rates of hookworm reinfection in malnourished children compared to well-nourished children, despite previous treatment. Additionally, soil-transmitted helminth (STH) infections can worsen the nutritional status of affected populations. Therefore, this study aims to clarify the effects of host malnutrition during Ancylostoma ceylanicum infection and how this infection affects host physiological parameters using a hamster model.

Methodology/Principal Findings

Hamsters were divided into four experimental groups: normal diet or low-protein diet (also referred to as “malnourished”) and A. ceylanicum infection or no infection. More severe pathogenesis was observed in the infected malnourished group, as demonstrated by significant decreases in the hemoglobin concentration, erythrocyte number and packed-cell volume compared to the non-infected malnourished group. Greater numbers of adult parasites and eggs were observed in the malnourished group compared to the control group; however, the oviposition rate was lower in the malnourished group. In general, greater values of total lipids were observed in malnourished animals compared to control animals, including lipids excreted in the stool.

Conclusions

In this work, we have demonstrated that animals fed an isocaloric low-protein diet presented more severe pathogenesis when infected with A. ceylanicum. The increased lipid concentration in the liver and blood is related to the conversion of the excess carbohydrate into fatty acids that increase the concentration of triglycerides in general. Triglycerides were excreted in the feces, indicating that infection associated with malnutrition caused a greater loss of these molecules for this group of animals and confirming the hypothesis that both nutrition and infection are responsible for the malabsorption syndrome. Taken together, the results found in this work confirm the hypothesis that the nutritional condition of the host greatly influences the course of the infection.  相似文献   
135.

Background  

Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric cancer and peptic ulcer. Bacterial virulence factors such as CagA have been shown to increase the risk of both diseases. Studies have suggested a causal role for CagA EPIYA polymorphisms in gastric carcinogenesis, and it has been shown to be geographically diverse. We studied associations between H. pylori CagA EPIYA patterns and gastric cancer and duodenal ulcer, in an ethnically admixed Western population from Brazil. CagA EPIYA was determined by PCR and confirmed by sequencing. A total of 436 patients were included, being 188 with gastric cancer, 112 with duodenal ulcer and 136 with gastritis.  相似文献   
136.

Background  

Members of the legume genus Lupinus exude phloem 'spontaneously' from incisions made to the vasculature. This feature was exploited to document macromolecules present in exudate of white lupin (Lupinus albus [L.] cv Kiev mutant), in particular to identify proteins and RNA molecules, including microRNA (miRNA).  相似文献   
137.
DFT (B3LYP/6-31+G(d)) calculations of Mg2+ affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)3] (R = H, F, Cl, Br, OH, OCH3, CH3, CN, NH2 and NO2), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg2+ cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H2O)6]2+ complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.  相似文献   
138.
Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS) formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time- and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE) adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.  相似文献   
139.

Background

Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production.

Results

The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis.

Conclusions

Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole body termite extracts evidenced their ability to cleave all types of glycosidic bonds present in plant polysaccharides. The comprehensive proteomic analysis, revealed a complete collection of hydrolytic enzymes including cellulases (GH1, GH3, GH5, GH7, GH9 and CBM 6), hemicellulases (GH2, GH10, GH11, GH16, GH43 and CBM 27) and pectinases (GH28 and GH29).  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号