首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   21篇
  国内免费   3篇
  417篇
  2022年   4篇
  2021年   2篇
  2019年   6篇
  2018年   8篇
  2017年   7篇
  2016年   10篇
  2015年   15篇
  2014年   20篇
  2013年   20篇
  2012年   33篇
  2011年   24篇
  2010年   21篇
  2009年   20篇
  2008年   27篇
  2007年   24篇
  2006年   38篇
  2005年   16篇
  2004年   16篇
  2003年   15篇
  2002年   16篇
  2001年   11篇
  2000年   14篇
  1999年   9篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1968年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
31.
Huh SU  Kim MJ  Ham BK  Paek KH 《The New phytologist》2011,191(3):746-762
? In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. ? To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. ? Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. ? These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.  相似文献   
32.
Redox-active cysteine, a highly reactive sulfhydryl, is one of the major targets of ROS. Formation of disulfide bonds and other oxidative derivatives of cysteine including sulfenic, sulfinic, and sulfonic acids, regulates the biological function of various proteins. We identified novel low-abundant cysteine modifications in cellular GAPDH purified on 2-dimensional gel electrophoresis (2D-PAGE) by employing selectively excluded mass screening analysis for nano ultraperformance liquid chromatography-electrospray-quadrupole-time of flight tandem mass spectrometry, in conjunction with MODi and MODmap algorithm. We observed unexpected mass shifts (Δm=-16, -34, +64, +87, and +103 Da) at redox-active cysteine residue in cellular GAPDH purified on 2D-PAGE, in oxidized NDP kinase A, peroxiredoxin 6, and in various mitochondrial proteins. Mass differences of -16, -34, and +64 Da are presumed to reflect the conversion of cysteine to serine, dehydroalanine (DHA), and Cys-SO2-SH respectively. To determine the plausible pathways to the formation of these products, we prepared model compounds and examined the hydrolysis and hydration of thiosulfonate (Cys-S-SO2-Cys) either to DHA (Δm=-34 Da) or serine along with Cys-SO2-SH (Δm=+64 Da). We also detected acrylamide adducts of sulfenic and sulfinic acids (+87 and +103 Da). These findings suggest that oxidations take place at redox-active cysteine residues in cellular proteins, with the formation of thiosulfonate, Cys-SO2-SH, and DHA, and conversion of cysteine to serine, in addition to sulfenic, sulfinic and sulfonic acids of reactive cysteine.  相似文献   
33.
The 26S proteasome involved in degradation of proteins covalently modified with polyubiquitin consists of the 20S proteasome and 19S regulatory complex. The NbPAF gene encoding the alpha6 subunit of the 20S proteasome was identified from Nicotiana benthamiana. NbPAF exhibits high sequence homology with the corresponding genes from Arabidopsis, human and yeast. The deduced amino acid sequence of NbPAF reveals that this protein contains the proteasome alpha-type subunits signature and nuclear localization signal at the N-terminus. The genomic Southern blot analysis suggests that the N. benthamiana genome contains one copy of NbPAF. The NbPAF mRNA was detected abundantly in flowers and weakly in roots and stems, but it was almost undetectable in mature leaves. In response to stresses, accumulation of the NbPAF mRNA was stimulated by methyl jasmonate, NaCl and salicylic acid, but not by abscisic acid and cold treatment in leaves. The NbPAF-GFP fusion protein was localized in the cytoplasm and nucleus.  相似文献   
34.
Hot pepper (Capsicum annuum) plants exhibit a hypersensitive response (HR) against infection by many tobamoviruses. A clone (CaPR-4) encoding a putative pathogenesis-related protein 4 was isolated by differential screening of a cDNA library prepared from resistant pepper plant leaves inoculated with tobacco mosaic virus (TMV) pathotype P0. The predicted amino acid sequence of CaPR-4 is very similar to those of other plant PR-4s. Southern blot analysis showed that small gene families of PR-4-related sequences were present in the pepper genome. Hot pepper cultivar Bugang, resistant to TMV-P0 and susceptible to TMV-P1.2, induced CaPR-4 expression by pathotype P0 inoculation in inoculated and systemic leaves, but not by pathotype P1.2. Effects of exogenously applied abiotic elicitors upon the CaPR-4 expression were also examined. The expression of the CaPR-4 gene was stimulated by methyl jasmonate (MeJA), ethephon and wounding treatment. However, application of salicylic acid (SA) did not trigger the expression. Evidence is emerging that jasmonic acid and ethylene play key roles in the SA-independent pathways of plant-pathogen interaction. Taken together, these results suggest that the CaPR-4 gene is one of the defense-related genes conferring resistance on pepper plants by the SA-independent pathway and the cross-talk between signaling compounds, jasmonic acid and ethylene could have a great regulatory potential in a plant's defense against TMV.  相似文献   
35.
Fritillaria thunbergii Miq. bulb-scale sections were cultured using Murashige and Skoog (MS) medium supplemented with NAA (1.62 M) and KN/2iP/BA (0.47–23.23 M).A high frequency of bulblets was developed from the scale sections and these bulblets have developed leaves and roots in 12 weeks of culture. An optimum of 13.7 bulblets developed from scale sections on solid MS medium supplemented with 1.62 M NAA and 4.65 M KN. Cultures incubated under cycles of 16 h white fluorescent light (40 mol m–2 s–1) and 8 h dark at a temperature regime of 25°C have produced optimal bulblets compared to cultures incubated under continuous dark at 25°C. The bulblets were harvested at the end of culture period and were given cold treatment at 5°C for 5 weeks and then transplanted to a potting mixture of peat moss, vermiculite and perlite (1:1:1). The bulblets, which were more than 10 mm in diameter, sprouted (100%) in 5 weeks of transplantation.  相似文献   
36.
Cholera toxin (CTX) increased c-fos mRNA level whereas it down-regulated the c-jun mRNA level in rat C6 glioma cells. In contrast to the action of CTX, pertussis toxin (PTX) did not affect either c-fos or c-jun mRNA level. The elevated c-fos mRNA level induced by CTX was significantly inhibited by the co-treatment with dexamethasone (DEX). However, DEX did not affect CTX-induced down-regulation of c-jun mRNA level. Cycloheximide (CHX) increased c-fos and c-jun mRNA levels. CHX caused a super-induction of CTX-induced c-fos mRNA level. Our results suggest that CTX-, but not PTX-, sensitive G-proteins may play an important role for c-fos mRNA up-regulation and c-jun mRNA down-regulation. In addition, DEX appears to have a selective inhibitory action against c-fos mRNA expression regulated by CTX. Ongoing protein synthesis inhibition is required for the superinduction of c-fos, but not c-jun, mRNA induced by CTX.  相似文献   
37.
Jasmonic acid (JA) functions in plant development, including senescence and immunity. Arabidopsis thaliana CORONATINE INSENSITIVE 1 encodes a JA receptor and functions in the JA‐responsive signaling pathway. The Arabidopsis genome harbors a single COI gene, but the rice (Oryza sativa) genome harbors three COI homologs, OsCOI1a, OsCOI1b, and OsCOI2. Thus, it remains unclear whether each OsCOI has distinct, additive, synergistic, or redundant functions in development. Here, we use the oscoi1b‐1 knockout mutants to show that OsCOI1b mainly affects leaf senescence under senescence‐promoting conditions. oscoi1b‐1 mutants stayed green during dark‐induced and natural senescence, with substantial retention of chlorophylls and photosynthetic capacity. Furthermore, several senescence‐associated genes were downregulated in oscoi1b‐1 mutants, including homologs of Arabidopsis thaliana ETHYLENE INSENSITIVE 3 and ORESARA 1, important regulators of leaf senescence. These results suggest that crosstalk between JA signaling and ethylene signaling affects leaf senescence. The Arabidopsis coi1‐1 plants containing 35S:OsCOI1a or 35S:OsCOI1b rescued the delayed leaf senescence during dark incubation, suggesting that both OsCOI1a and OsCOI1b are required for promoting leaf senescence in rice. oscoi1b‐1 mutants showed significant decreases in spikelet fertility and grain weight, leading to severe reduction of grain yield, indicating that OsCOI1‐mediated JA signaling affects spikelet fertility and grain filling.  相似文献   
38.
39.
The present study reports an efficient protocol for indirect shoot organogenesis and plantlets regeneration of Withania somnifera (L.) Dunal. Leaf explants were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of 6-benzylaminopurine (BAP) and indole-3-acetic acid (IAA). The highest callus induction rate (89.5 %) and shoot regeneration rate (92 %) were obtained when 2 mg dm−3 BAP was combined with 0.5 mg dm−3 IAA. Three major withanolides (withaferine A, 12-deoxywithastramonolide and withanolide A) were investigated in different plant organs from in vitro and greenhouse grown plants. Leaves contained higher contents of withanolides and phenolics than roots or stems, whereas roots contained the highest contents of flavonoids and polysacharides. In vitro grown plants contained greater contents of phenolics, flavonoids and polysaccharides while lower contents of withanolides than greenhouse grown plants.  相似文献   
40.
Plaminogen activator inhibitor-1 (PAI-1), the key physiological inhibitor of the plasmin fibrinolytic system, plays important roles in the pathogenesis of asthma. Mast cells (MCs) are crucial effector cells and a major source of PAI-1 for asthma. Cyclic adenosine monophosphate (cAMP) is the important regulator of MCs; however, its effects on PAI-1 expression in MCs remain unknown. We reported cAMP/protein kinase A pathway positively regulates PAI-1 expression through cAMP-response element binding protein binding to hypoxia response element-1 at −158 to −153 bp of human PAI-1 promoter in human MCs. Moreover, cAMP synergistically augments PAI-1 expression with ionomycin- or IgE receptor cross-linking-mediated stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号