首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   18篇
  国内免费   2篇
  2022年   4篇
  2021年   2篇
  2019年   6篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   14篇
  2014年   20篇
  2013年   18篇
  2012年   34篇
  2011年   24篇
  2010年   21篇
  2009年   21篇
  2008年   25篇
  2007年   22篇
  2006年   38篇
  2005年   13篇
  2004年   16篇
  2003年   14篇
  2002年   15篇
  2001年   11篇
  2000年   14篇
  1999年   9篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1968年   1篇
  1958年   1篇
排序方式: 共有394条查询结果,搜索用时 15 毫秒
61.
Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat‐insulin‐promoter‐Cre (RIP‐Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT. Genetic ablation of APPL2 in RIP‐Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP‐Cre neurons, inactivation of VMH AMPK, or treatment with a β3‐adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP‐Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP‐Cre neurons, in which the APPL2–AMPK signaling axis is crucial for this defending mechanism to cold and obesity.  相似文献   
62.
Factors that control the performance of a reversible immunosensor with an analyte (progesterone)-enzyme (horseradish peroxidase) conjugate as signal generator have been investigated. The conjugate is used in conjunction with two antibodies, which are specific to progesterone and to horseradish peroxidase, immobilized on two spatially separated polypropylene mesh discs. The conjugate and two antibodies are confined to an internal compartment of a microdialyzer by a semipermeable membrane. The small analyte from an external medium permeates across the membrane into the internal compartment where the analyte concentration determines the relative amounts of the bound conjugate on the two solid surfaces. By measuring two signals from the conjugate bound at two separate sites, we experimentally obtained time-response curves to a concentration pulse of the external analyte. A mathematical (kinetic) model describing the sensor system was developed and used for the determination of rate-limiting factors. In semicontinuous monitoring of the analyte concentrations, operation of the immunosensor with the enzyme conjugate as signal generator required special attention to (a) enzyme stability, (b) analyte permeation (dependence on medium components), and (c) kinetics related to the different accessibility to the same antibody of the small analyte (to be measured) vs. the larger counterpart on the enzyme conjugate (for signal generation). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 221-231, 1997.  相似文献   
63.
64.
Two-years-old Ginkgo biloba cell culture initiated from cotyledonary explants was cryopreserved by a simple desiccation method. Preliminary incubation of callus clumps on MS preculture medium supplemented with 100 g l−1 sucrose and 2 mg l−1 ABA for 7 and 14 days resulted in accumulation of endogenous soluble sugars and was essential for cell culture post-cryopreservation survival. The optimal time for the preculture on sucrose-and-ABA containing medium was found to be 14 days. The sufficient desiccation duration was determined as 150 min. FCM profiles of calli maintained for 2 years remained stable and were not affected by cryopreservation.  相似文献   
65.
66.
Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. Mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyaminefree media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system.  相似文献   
67.
Capsicum annuum L. Bugang exhibits a hypersensitive response against Tobacco mosaic virus (TMV) P0 infection. The C. annuumUDP-glucosyltransferase 1 (CaUGT1) gene was upregulated during resistance response to TMV and by salicylic acid, ethephon, methyl viologen, and sodium nitroprusside treatment. When the gene was downregulated by virus-induced gene silencing, a delayed HR was observed. In addition, free and total SA concentrations in the CaUGT1-downregulated hot pepper were decreased by 52% and 48% compared to that of the control plants, respectively. This suggested that the CaUGT1 gene was involved in resistance response against TMV infection by controlling the accumulation of SA.  相似文献   
68.
Choi KJ  Grass S  Paek S  St Geme JW  Yeo HJ 《PloS one》2010,5(12):e15888
The Haemophilus influenzae HMW1 adhesin is an important virulence exoprotein that is secreted via the two-partner secretion pathway and is glycosylated at multiple asparagine residues in consensus N-linked sequons. Unlike the heavily branched glycans found in eukaryotic N-linked glycoproteins, the modifying glycan structures in HMW1 are mono-hexoses or di-hexoses. Recent work demonstrated that the H. influenzae HMW1C protein is the glycosyltransferase responsible for transferring glucose and galactose to the acceptor sites of HMW1. An Actinobacillus pleuropneumoniae protein designated ApHMW1C shares high-level homology with HMW1C and has been assigned to the GT41 family, which otherwise contains only O-glycosyltransferases. In this study, we demonstrated that ApHMW1C has N-glycosyltransferase activity and is able to transfer glucose and galactose to known asparagine sites in HMW1. In addition, we found that ApHMW1C is able to complement a deficiency of HMW1C and mediate HMW1 glycosylation and adhesive activity in whole bacteria. Initial structure-function studies suggested that ApHMW1C consists of two domains, including a 15-kDa N-terminal domain and a 55-kDa C-terminal domain harboring glycosyltransferase activity. These findings suggest a new subfamily of HMW1C-like glycosyltransferases distinct from other GT41 family O-glycosyltransferases.  相似文献   
69.
Microbial fuel cells (MFCs) degrade organic contaminants in wastewater while simultaneously producing electricity, but must be stacked to yield adequate voltage and current. This study examined the evolution of the chemical oxygen demand (COD) removal rate and efficiency in two identical individual MFCs (i-MFCs) in series- and parallel-connected stacks (sc- and pc-MFCs, respectively) under batch and continuous operation. The stack voltage and current increased in the respective series and parallel connections of the two i-MFCs (MFC unit 1 and MFC unit 2). Voltage reversal was observed in the sc- MFC below an external load of 100 Ω. Regardless of occurrence of the voltage reversal, organic reduction between i-MFCs and sc-MFCs showed no significant difference (gap of < 9% and < 6% in COD removal rate and efficiency, respectively); additionally, organic removals between the two individual MFCs in series indicated differences less than 9% of COD removal rate and 5% of COD removal efficiency in batch mode. Continuous operation also yielded similar organic removals as the MFCs in individual and series connection (voltage reversal occurred) mode, even over 8 days operation. Parallel connection yielded identical organic removals and currents in the two individual MFCs of the pc-MFC, even though the two separate i-MFCs showed different organic removal rates and current productions. This study provides the guide for the application of stacked MFCs for power source and efficient organic pollutant removal in wastewater treatment process.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号