全文获取类型
收费全文 | 432篇 |
免费 | 22篇 |
国内免费 | 2篇 |
专业分类
456篇 |
出版年
2022年 | 7篇 |
2021年 | 9篇 |
2020年 | 1篇 |
2019年 | 6篇 |
2018年 | 9篇 |
2017年 | 8篇 |
2016年 | 11篇 |
2015年 | 15篇 |
2014年 | 21篇 |
2013年 | 19篇 |
2012年 | 38篇 |
2011年 | 28篇 |
2010年 | 21篇 |
2009年 | 23篇 |
2008年 | 26篇 |
2007年 | 23篇 |
2006年 | 39篇 |
2005年 | 14篇 |
2004年 | 15篇 |
2003年 | 14篇 |
2002年 | 17篇 |
2001年 | 13篇 |
2000年 | 16篇 |
1999年 | 8篇 |
1998年 | 11篇 |
1997年 | 6篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 7篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1982年 | 3篇 |
1980年 | 1篇 |
1977年 | 3篇 |
1976年 | 2篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有456条查询结果,搜索用时 15 毫秒
41.
42.
Soon-Yong Choi Hee Yun Park Aron Paek Gil Seob Kim Seong Eun Jeong 《Molecules and cells》2009,28(6):575-581
Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. Mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyaminefree media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system. 相似文献
43.
Janet Lee Jeong-Hwa Baek Kyu-Sil Choi Hyun-Soo Kim Hye-Young Park Geun-Hyoung Ha Ho Park Kyo-Won Lee Chang Geun Lee Dong-Yun Yang Hyo Eun Moon Sun Ha Paek Chang-Woo Lee 《Cell cycle (Georgetown, Tex.)》2013,12(3):442-451
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs. 相似文献
44.
Summary
In vitro plantlets of Phalaenopsis ‘Happy Valentine’, Neofinetia falcate Hu, Cymbidium kanran Makino, and Cymbidium goeringii Reichb. f. were grown under photoautotrophic [high photosynthetic photon flux (PPF), high CO2 concentration, and increased number of air exchanges] and heterotrophic (low PPF, low CO2 concentration, no air exchanges) culture conditions. After 40 d of culture, a significant difference in plantlet growth was
observed between the two cultures. Total fresh and dry mass were on average 1.5 times greater in photoautotrophic culture
than in heterotrophic culture. Higher net photosynthetic rates were also observed for Phalaenopsis in photoautotrophic culture. In photoautotrophic culture, little difference was observed in air temperature between the inside
and outside of the culture vessel, whereas in heterotrophic culture, air temperature inside the culture vessel was 1–2°C higher
than that outside the culture vessel. Relative humidity inside the culture vessel was remarkably different between the two
cultures: 83–85% in photoautotrophic culture and 97–99% in heterotrophic culture. These results indicated that growth and
net photosynthetic rate of in vitro orchid plantlets were susceptible to the culture environments such as PPF, CO2 concentration, relative humidity (RH), and the number of air exchanges, which would allow a more efficient micropropagation
system for these orchid plants. 相似文献
45.
Morinda citrifolia adventitious roots were cultured in shake flasks using Murashige and Skoog medium with different types and concentrations
of auxin and cytokinin. Root (fresh weight and dry weight) accumulation was enhanced at 5 mg l−1 indole butyric acid (IBA) and at 7 and 9 mg l−1 naphthalene acetic acid (NAA). On the other hand, 9 mg l−1 NAA decreased the anthraquinone, phenolic and flavonoid contents more severely than 9 mg l−1 IBA. When adventitious roots were treated with kinetin (0.1, 0.3 and 0.5 mg l−1) and thidiazuron (TDZ; 0.1, 0.3 and 0.5 mg l−1) in combination with 5 mg l−1 IBA, fresh weight and dry weight decreased but secondary metabolite content increased. The secondary metabolite content (including
1,1-diphenyl-2-picrylhydrazyl activity) increased more in TDZ-treated than in kinetin-treated roots. Antioxidative enzymes
such as catalase (CAT) and guaiacol peroxidase (G-POD), which play important roles in plant defense, also increased. A strong
decrease in ascorbate peroxidase activity resulted in a high accumulation of hydrogen peroxide. This indicates that adventitious
roots can grow under stress conditions with induced CAT and G-POD activities and higher accumulations of secondary metabolites.
These results suggest that 5 mg l−1 IBA supplementation is useful for growth and secondary metabolite production in adventitious roots of M. citrifolia. 相似文献
46.
47.
48.
Md. Abdullahil Baque Eun-Joo Hahn Kee-Yoeup Paek 《In vitro cellular & developmental biology. Plant》2010,46(1):71-80
An efficient protocol for adventitious root induction from leaf explants of Morinda citrifolia treated with different concentrations of indole-3-butyric acid (IBA) and α-naphthaleneacetic acid (NAA) was established in relation to physiological process changes during adventitious root induction under different light sources (fluorescent, red, blue, red + blue, and far-red). Among the different concentrations of IBA and NAA, 1.0 mg l−1 IBA was proven as the best auxin source for adventitious root induction under fluorescent light. Higher concentrations of IBA and NAA trigger callus formation in both light and dark conditions. Maximum numbers of adventitious roots were induced under red light (26) followed by blue light (22) and the lowest under far-red light (6). In contrast, numerous callus formations were induced by red + blue followed by red and blue, while the highest root length (1.66 cm) with negligible callusing was observed under fluorescent light. Catalase and guaicacol peroxidase activities were highest under red light followed by fluorescent light and the lowest under red + blue light, but superoxide dismutase activity was not significantly influenced by different light sources. Ascorbate peroxidase played an important role in detoxification of the harmful effects of hydrogen peroxide (H2O2). Under fluorescent light, significantly lower accumulation of H2O2 was observed. Accumulation of H2O2 in the induced root under different light showed a positive correlation with peroxidation of lipids and was observed higher under far-red followed by red + blue and blue light. 相似文献
49.
The effects of methyl jasmonate (MJ) elicitation on the cell growth and accumulation of ginsenoside in 5-l bioreactor suspension cultures of Panax ginseng were investigated. Ginsenoside accumulation was enhanced by elicitation by MJ (in the range 50–400 M); however, fresh weight, dry weight and growth ratio of the cells was strongly inhibited by increasing MJ concentration. The highest ginsenoside yield was obtained at 200 M MJ. In the second experiment, 200 M MJ was added on day 15 during the cultivation. The ginsenoside, Rb group, and Rg group ginsenoside content increased 2.9, 3.7, and 1.6 times, respectively, after 8 days of MJ treatment. Rb group gisnsenosides accumulated more than Rg group ginsenosides. Among Rb group ginsenosides, Rb1 content increased significantly by four times but the contents of Rb2, Rc and Rd increased only slightly. Among Rg group ginsenosides, Rg1 and Re showed 2.3-fold and 3.0-fold increments, respectively, whereas there was only a slight increment in Rf group ginsenosides. These results suggest that MJ elicitation is beneficial for ginsenoside production using 5-l bioreactor cell suspension cultures. 相似文献
50.