首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   2篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   9篇
  2013年   13篇
  2012年   8篇
  2011年   9篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   12篇
  2006年   4篇
  2005年   3篇
  2004年   9篇
  2003年   3篇
  2002年   4篇
  2000年   2篇
  1997年   1篇
  1994年   1篇
  1993年   3篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有137条查询结果,搜索用时 31 毫秒
41.
Activated T cell death (ATCD) after peak clonal expansion is required for effective homeostasis of the immune system. Using a mouse model of T cell clonal expansion and contraction, we found that regulation of the proapoptotic kinase glycogen synthase kinase (GSK)-3beta plays a decisive role in determining the extent to which T cells are eliminated after activation. Involvement of GSK-3beta in ATCD was tested by measuring T cell survival after GSK-3beta inhibition, either ex vivo with chemical and pharmacological inhibitors or in vivo by retroviral expression of a dominant-negative form of GSK-3. We also measured amounts of inactivating phosphorylation of GSK-3beta (Ser9) in T cells primed in the presence or absence of LPS. Our results show that GSK-3beta activity is required for ATCD and that its inhibition promoted T cell survival. Adjuvant treatment in vivo maintained GSK-3beta (Ser9) phosphorylation in activated T cells, whereas with adjuvant-free stimulation it peaked and then decayed as the cells became susceptible to ATCD. We conclude that the duration of GSK-3beta inactivation determines activated T cell survival and that natural adjuvant stimulation decreases the severity of clonal contraction in part by keeping a critical proapoptotic regulatory factor, GSK-3beta, inactivated.  相似文献   
42.
Arachidonate 5-lipoxygenase activating protein (ALOX5AP) has been reported to demonstrate linkage and association with ischemic stroke and myocardial infarction. However, replication studies have been conflicting and to date, a significant proportion of blacks have not been studied. We prospectively recruited cases of ischemic stroke from all 16 hospitals in the Greater Cincinnati/Northern Kentucky region and demographically matched them to stroke-free population-based controls. Single nucleotide polymorphisms (SNPs) were selected based on association with ischemic stroke in prior studies. Allelic, genotypic and haplotypic association testing was performed using HAPLOVIEW. Multiple logistic regression was used to control for the presence of traditional risk factors including hypertension, diabetes, hypercholesterolemia and smoking. A total of 357 cases and 482 controls were genotyped. The SNPs, rs9579646 and rs4769874 were found to be significantly associated at both allelic (P = 0.019 and P < 10−4, respectively) and genotypic level with ischemic stroke among whites after correction for multiple testing. Haplotype association was identified with ischemic stroke as well as ischemic stroke subtypes among whites. Although an overall haplotype association with ischemic stroke was identified among blacks no evidence of association among individual haplotypes, alleles or genotypes were observed. Allele frequencies for the SNPs examined were markedly different among whites and blacks. In conclusion, we report significant association of variants of ALOX5AP with ischemic stroke and ischemic stroke subtypes among whites. No significant association was identified among blacks.  相似文献   
43.
Biological phenomena at the cellular level can be represented by various types of mathematical formulations. Such representations allow us to carry out numerical simulations that provide mechanistic insights into complex behaviours of biological systems and also generate hypotheses that can be experimentally tested. Currently, we are particularly interested in spatio-temporal representations of dynamic cellular phenomena and how such models can be used to understand biological specificity in functional responses. This review describes the capability and limitations of the approaches used to study spatio-temporal dynamics of cell signalling components.  相似文献   
44.
Extracellular nucleotides control mechanisms such as thrombosis or inflammation that are important in several pathologies, including heart valve disease and calcification. Ectonucleoside triphosphate diphosphohydrolase 1 (eNTPD1, CD39) and ecto-5′-nucleotidase (e5NT, CD73) are ectoenzymes that convert adenosine triphosphate to adenosine diphosphate, adenosine monophosphate and finally to adenosine. Changes in activities of these enzymes influence extracellular nucleotide concentrations and therefore could be involved in valve pathology. This study aimed to analyze type of cells, specific area, level of expression and biochemical function of CD39 and CD73 in pig aortic valves. Samples were collected from aortic valves of domestic pigs. Histological sections were cut from paraffin embedded tissue blocks. Following incubation with primary antibody against CD39 or CD73, washing and secondary goat anti-rabbit secondary antibodies, slides were viewed with NanoZoomer scanner. Substantial expression CD39 and CD73 was observed in two main types of valve cells: endothelial and valve interstitial cells. Subsequently, biochemical function of CD39 and CD73 was evaluated in cells cultured from pig aortic valve. Breakdown of extracellular nucleotides added to cell medium was analyzed with high performance liquid chromatography. In the interstitial cells, the CD73 products formation was much faster than in endothelium, while for the CD39 activity this relation was opposite. Expression and high concentration of CD39 and CD73 products in endothelium are expected, but presence of CD73 in valve interstitial cells is a surprise. We conclude that CD39 and CD73 and their enzymatic activities that convert extracellular nucleotides are highly expressed and could have special function in the valve.  相似文献   
45.
The development of vaccines against specific types of cancers will offer new modalities for therapeutic intervention. Here, we describe the synthesis of a novel vaccine construction prepared from spherical gold nanoparticles of 3-5 nm core diameters. The particles were coated with both the tumor-associated glycopeptides antigens containing the cell-surface mucin MUC4 with Thomsen Friedenreich (TF) antigen attached at different sites and a 28-residue peptide from the complement derived protein C3d to act as a B-cell activating "molecular adjuvant". The synthesis entailed solid-phase glycopeptide synthesis, design of appropriate linkers, and attachment chemistry of the various molecules to the particles. Attachment to the gold surface was mediated by a novel thiol-containing 33 atom linker which was further modified to be included as a third "spacer" component in the synthesis of several three-component vaccine platforms. Groups of mice were vaccinated either with one of the nanoplatform constructs or with control particles without antigen coating. Evaluation of sera from the immunized animals in enzyme immunoassays (EIA) against each glycopeptide antigen showed a small but statistically significant immune response with production of both IgM and IgG isotypes. Vaccines with one carbohydrate antigen (B, C, and E) gave more robust responses than the one with two contiguous disaccharides (D), and vaccine E with a TF antigen attached to threonine at the 10th position of the peptide was selected for IgG over IgM suggesting isotype switching. The data suggested that this platform may be a viable delivery system for tumor-associated glycopeptide antigens.  相似文献   
46.
A change of the reaction rate was observed for the lipasecatalysed hydrolysis of ricebran oil in a batch stirred tank reactor using immobilized lipase enzyme as compared to free enzyme. The reactor rate was observed to be controlled mainly by factors like temperature, pH, initial enzyme concentration, initial substrate concentration and initial products concentration.  相似文献   
47.
Tannic acid mordanting reveals the periplasm, the area between the outer membrane and the inner membrane of gram-negative bacteria, Rhizobium gp., Escherichia colt and Enterobacter aeregenes, as an electron-dense layer continuous with the inner leaflet of the outer membrane. The method involves 18 hr of tannic acid treatment after fixation in aldehyde prior to osmium tetroxide postfixation, followed by conventional electron microscopy.  相似文献   
48.
Mouse fibroblasts, deficient in DNA polymerase beta, are hypersensitive to monofunctional DNA methylating agents such as methyl methanesulfonate (MMS). Both wild-type and, in particular, repair-deficient DNA polymerase beta null cells are highly sensitized to the cytotoxic effects of MMS by 4-amino-1,8-naphthalimide (4-AN), an inhibitor of poly(ADP-ribose) polymerase (PARP) activity. Experiments with synchronized cells suggest that exposure during S-phase of the cell cycle is required for the 4-AN effect. 4-AN elicits a similar extreme sensitization to the thymidine analog, 5-hydroxymethyl-2'-deoxyuridine, implicating the requirement for an intermediate of DNA repair. In PARP-1-expressing fibroblasts treated with a combination of MMS and 4-AN, a complete inhibition of DNA synthesis is apparent after 4 h, and by 24 h, all cells are arrested in S-phase of the cell cycle. Continuous incubation with 4-AN is required to maintain the cell cycle arrest. Caffeine, an inhibitor of the upstream checkpoint kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related), has no effect on the early inhibition of DNA synthesis, but cells are no longer able to maintain the block after 8 h. Instead, the addition of caffeine leads to arrest of cells in G(2)/M rather than S-phase after 24 h. Analysis of signaling pathways in cell extracts reveals an activation of Chk1 after treatment with MMS and 4-AN, which can be suppressed by caffeine. Our results suggest that inhibition of PARP activity results in sensitization to MMS through maintenance of an ATR and Chk1-dependent S-phase checkpoint.  相似文献   
49.
Previous research in our laboratory investigated the effectiveness of a common agrochemical, urea used as a chaotropic agent to facilitate 2,4,6-trinitrotoluene (TNT) removal by vetiver grass (Vetiveria zizanioides L.). Chaotropic agents disrupt water structure, increasing solubilization of hydrophobic compounds (TNT), and enhancing plant TNT uptake. Our findings showed that urea significantly enhanced TNT uptake kinetics by vetiver. We hypothesized that the beneficial effect of urea on the overall TNT uptake by vetiver grass was not plant-specific. We explored this hypothesis by testing the ability of wheat (Triticum aestivum L.) in removing TNT from aqueous media in the presence of urea. Results showed that untreated (no urea) wheat exhibited a slow, kinetically limited TNT uptake that was nearly half of the urea-treated wheat TNT capacity (250 mg kg−1). Chaotropic effects of urea were illustrated by the significant (P < 0.001) increase in the TNT second-order reaction rate constants over those of the untreated (no urea) controls. Plant TNT speciation showed that TNT and several of its metabolites were detected in both root and shoot compartments of the plant, allowing for 110 and 36% recovery for the untreated and 0.1% urea treated plants. The lower % recovery of the urea-treated plants was attributed to a number of unknown polar TNT metabolites. Responsible Editor: Hans Lambers.  相似文献   
50.
Feeding mice a methionine and choline-deficient (MCD) diet serves as an experimental animal model for nonalcoholic steatohepatitis (NASH). In the present study we examined the effect of exposing AML-12 hepatocytes to MCD culture medium in regard to mechanisms of steatosis and alanine amino-transferase (ALT) release. Cells exposed to MCD medium developed significant and progressive steatosis from 6 to 24 h and also had significantly increased loss of ALT into the medium at 18 and 24 hours of incubation. No increased oxidative injury or cell death was observed. Osteopontin (OPN) mRNA in cells and protein expression in medium were significantly increased during 6-24 hours of incubation. MCD medium treatment also resulted in activation of PI3-kinase by 30 minutes and its downstream target p-Akt within 1hour of incubation. Steatosis was associated with increased expression of microsomal triglyceride transfer protein (MTTP) mRNA and increased ALT release with over expression of ALT mRNA, all of which were completely prevented by inhibition of PI3-kinase (LY294002). Blocking OPN signaling by treating with anti-OPN or anti-beta3-integrin antibody prevented the increased ALT release while only partially prevented the increased ALT mRNA expression, but had no effect on either steatosis or MTTP expression. In conclusion, incubation of cultured hepatocytes with MCD medium results in cellular steatosis and OPN dependent ALT release. PI3-kinase plays a central role in signaling the MCD medium-induced steatosis and increased OPN expression, whereas OPN appears to play a role in signaling hepatocyte ALT release but not steatosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号