首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   29篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   14篇
  2015年   9篇
  2014年   8篇
  2013年   27篇
  2012年   33篇
  2011年   28篇
  2010年   28篇
  2009年   22篇
  2008年   28篇
  2007年   21篇
  2006年   13篇
  2005年   17篇
  2004年   23篇
  2003年   15篇
  2002年   14篇
  2001年   15篇
  2000年   5篇
  1999年   11篇
  1998年   7篇
  1997年   2篇
  1995年   1篇
  1994年   5篇
  1993年   4篇
  1992年   15篇
  1991年   10篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   1篇
  1974年   3篇
  1973年   2篇
  1972年   7篇
  1970年   1篇
  1969年   3篇
排序方式: 共有463条查询结果,搜索用时 31 毫秒
141.
142.
Interaction between the hepatitis C virus (HCV) envelope protein E2 and the host receptor CD81 is essential for HCV entry into target cells. The number of E2-CD81 complexes necessary for HCV entry has remained difficult to estimate experimentally. Using the recently developed cell culture systems that allow persistent HCV infection in vitro, the dependence of HCV entry and kinetics on CD81 expression has been measured. We reasoned that analysis of the latter experiments using a mathematical model of viral kinetics may yield estimates of the number of E2-CD81 complexes necessary for HCV entry. Here, we constructed a mathematical model of HCV viral kinetics in vitro, in which we accounted explicitly for the dependence of HCV entry on CD81 expression. Model predictions of viral kinetics are in quantitative agreement with experimental observations. Specifically, our model predicts triphasic viral kinetics in vitro, where the first phase is characterized by cell proliferation, the second by the infection of susceptible cells and the third by the growth of cells refractory to infection. By fitting model predictions to the above data, we were able to estimate the threshold number of E2-CD81 complexes necessary for HCV entry into human hepatoma-derived cells. We found that depending on the E2-CD81 binding affinity, between 1 and 13 E2-CD81 complexes are necessary for HCV entry. With this estimate, our model captured data from independent experiments that employed different HCV clones and cells with distinct CD81 expression levels, indicating that the estimate is robust. Our study thus quantifies the molecular requirements of HCV entry and suggests guidelines for intervention strategies that target the E2-CD81 interaction. Further, our model presents a framework for quantitative analyses of cell culture studies now extensively employed to investigate HCV infection.  相似文献   
143.
Novel therapies are urgently needed to prevent and treat tyrosine kinase inhibitor resistance in chronic myeloid leukaemia (CML). MLN8237 is a novel Aurora A kinase inhibitor under investigation in multiple phase I and II studies. Here we report that MLN8237 possessed equipotent activity against Ba/F3 cells and primary CML cells expressing unmutated and mutated forms of breakpoint cluster region-Abelson kinase (BCR-ABL). Notably, this agent retained high activity against the T315I and E255K BCR-ABL mutations, which confer the greatest degree of resistance to standard therapy. MLN8237 treatment disrupted cell cycle kinetics, induced apoptosis, caused a dose-dependent reduction in the expression of the large inhibitor of apoptosis protein Apollon, and produced a morphological phenotype consistent with Aurora A kinase inhibition. In contrast to other Aurora kinase inhibitors, MLN8237 did not significantly affect BCR-ABL activity. Moreover, inhibition of Aurora A with MLN8237 significantly increased the in vitro and in vivo efficacy of nilotinib. Targeted knockdown of Apollon sensitized CML cells to nilotinib-induced apoptosis, indicating that this is an important factor underlying MLN8237's ability to increase the efficacy of nilotinib. Our collective data demonstrate that this combination strategy represents a novel therapeutic approach for refractory CML that has the potential to suppress the emergence of T315I mutated CML clones.  相似文献   
144.
Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.  相似文献   
145.
146.
147.
148.
A comprehensive study on the effects of different carbon sources during the bacterial enrichment on the removal performances of benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds when present as a mixture was conducted. Batch BTEX removal kinetic experiments were performed using cultures enriched with individual BTEX compounds or BTEX as a mixture or benzoate alone or benzoate–BTEX mixture. An integrated Monod-type non-linear model was developed and a ratio between maximum growth rate (μ max) and half saturation constant (Ks) was used to fit the non-linear model. A higher μ max/Ks indicates a higher affinity to degrade BTEX compounds. Complete removal of BTEX mixture was observed by all the enriched cultures; however, the removal rates for individual compounds varied. Degradation rate and the type of removal kinetics were found to be dependent on the type of carbon source during the enrichment. Cultures enriched on toluene and those enriched on BTEX mixture were found to have the greatest μ max/Ks and cultures enriched on benzoate had the least μ max/Ks. Removal performances of the cultures enriched on all different carbon sources, including the ones enriched on benzoate or benzoate–BTEX mixture were also improved during a second exposure to BTEX. A molecular analysis showed that after each exposure to the BTEX mixture, the cultures enriched on benzoate and those enriched on benzoate–BTEX mixture had increased similarities to the culture enriched on BTEX mixture.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号