首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   36篇
  国内免费   2篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   7篇
  2015年   5篇
  2014年   12篇
  2013年   24篇
  2012年   17篇
  2011年   28篇
  2010年   16篇
  2009年   18篇
  2008年   22篇
  2007年   15篇
  2006年   12篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   7篇
  2000年   4篇
  1998年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   6篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
  1971年   4篇
  1970年   1篇
  1969年   2篇
  1968年   5篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有313条查询结果,搜索用时 0 毫秒
311.

Background  

High salinity (1–10% w/v) of tannery wastewater makes it difficult to be treated by conventional biological treatment. Salt tolerant microbes can adapt to these saline conditions and degrade the organics in saline wastewater.  相似文献   
312.
SUMO is a protein posttranslational modifier. SUMO cycle components are believed to be conserved in all eukaryotes. Proteomic analyses have lead to the identification a wealth of SUMO targets that are involved in almost every cellular function in eukaryotes. In this article, we describe the characterization of SUMO Cycle components in Hydra, a Cnidarian with an ability to regenerate body parts. In cells, the translated SUMO polypeptide cannot conjugate to a substrate protein unless the C‐terminal tail is cleaved, exposing the di‐Glycine motif. This critical task is done by SUMO proteases that in addition to SUMO maturation are also involved in deconjugating SUMO from its substrate. We describe the identification, bioinformatics analysis, cloning, and biochemical characterization of Hydra SUMO cycle components, with a focus on SUMO and SUMO proteases. We demonstrate that the ability of SUMO proteases to process immature SUMO is conserved from Hydra to flies. A transgenic Hydra, expressing a SUMO‐GFP fusion protein under a constitutive actin promoter, is generated in an attempt to monitor the SUMO Cycle in vivo as also to purify and identify SUMO targets in Hydra. genesis 51:619–629. © 2013 Wiley Periodicals, Inc.  相似文献   
313.
Exportin-t (Xpot) transports mature 5′- and 3′-end processed tRNA from the nucleus to the cytoplasm by associating with a small G-protein Ran (RAs-related nuclear protein), in the nucleus. The release of tRNA in cytoplasm involves RanGTP hydrolysis. Despite the availability of crystal structures of nuclear and cytosolic forms of Xpot, the molecular details regarding the sequential events leading to tRNA release and subsequent conformational changes occurring in Xpot remain unknown. We have performed a combination of classical all-atom and accelerated molecular dynamics simulations on a set of complexes involving Xpot to study a range of features including conformational flexibility of free and cargo-bound Xpot and functionally critical contacts between Xpot and its cargo. The systems investigated include free Xpot and its different complexes, bound either to Ran (GTP/GDP) or tRNA or both. This approach provided a statistically reliable estimate of structural dynamics of Xpot after cargo release. The mechanistic basis for Xpot opening after cargo release has been explained in terms of dynamic structural hinges, about which neighboring region could be displaced to facilitate the nuclear to cytosolic state transition. Post-RanGTP hydrolysis, a cascade of events including local conformational change in RanGTP and loss of critical contacts at Xpot/tRNA interface suggest factors responsible for eventual release of tRNA. The level of flexibility in different Xpot complexes varied depending on the arrangement of individual HEAT repeats. Current study provides one of the most comprehensive and robust analysis carried out on this protein using molecular dynamics schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号