首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   13篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   12篇
  2014年   13篇
  2013年   22篇
  2012年   25篇
  2011年   27篇
  2010年   15篇
  2009年   15篇
  2008年   18篇
  2007年   21篇
  2006年   29篇
  2005年   16篇
  2004年   12篇
  2003年   10篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
101.
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   
102.
Conjugated linoleic acids (CLAs) are a group of dietary fatty acids that are widely marketed as weight loss supplements. The isomer responsible for this effect is the trans-10, cis-12 CLA (10E12Z-CLA) isomer. 10E12Z-CLA treatment during differentiation of 3T3-L1 adipocytes induces expression of prostaglandin-endoperoxide synthase-2 (Cyclooxygenase-2; COX-2). This work demonstrates that COX-2 is also induced in fully differentiated 3T3-L1 adipocytes after a single treatment of 10E12Z-CLA at both the mRNA (20-40 fold) and protein level (7 fold). Furthermore, prostaglandin (PG)F(2α), but not PGE(2), is significantly increased 10 fold. In female BALB/c mice fed 0.5% 10E12Z-CLA for 10 days, COX-2 was induced in uterine adipose (2 fold). In vitro, pharmacological COX-2 inhibition did not block the effect of 10E12Z-CLA on adipocyte-specific gene expression although PGF(2α) was dose-dependently decreased. These studies demonstrate that PGF(2α) was not by itself responsible for the reduction in adipocyte character due to 10E12Z-CLA treatment. However, PGF(2α), either exogenously or endogenously in response to 10E12Z-CLA, increased the expression of the potent mitogen and epidermal growth factor (EGF) receptor (EGFR) ligand epiregulin in 3T3-L1 adipocytes. Blocking PGF(2α) signaling with the PGF(2α) receptor (FP) antagonist AL-8810 returned epiregulin mRNA levels back to baseline. Although this pathway is not directly responsible for adipocyte dependent gene expression, these results suggest that this signaling pathway may still have broad effect on the adipocyte and surrounding cells.  相似文献   
103.
Wide-field motion-sensitive neurons in the lobula plate (lobula plate tangential cells, LPTCs) of the fly have been studied for decades. However, it has never been conclusively shown which cells constitute their major presynaptic elements. LPTCs are supposed to be rendered directionally selective by integrating excitatory as well as inhibitory input from many local motion detectors. Based on their stratification in the different layers of the lobula plate, the columnar cells T4 and T5 are likely candidates to provide some of this input. To study their role in motion detection, we performed whole-cell recordings from LPTCs in Drosophila with T4 and T5 cells blocked using two different genetically encoded tools. In these flies, motion responses were abolished, while flicker responses largely remained. We thus demonstrate that T4 and T5 cells indeed represent those columnar cells that provide directionally selective motion information to LPTCs. Contrary to previous assumptions, flicker responses seem to be largely mediated by a third, independent pathway. This work thus represents a further step towards elucidating the complete motion detection circuitry of the fly.  相似文献   
104.
Physiological and pathological turnover of basement membranes liberates biologically active cryptic molecules. Several collagen-derived fragments possess anti-angiogenic activity. Arresten is the 26-kDa non-collagenous domain of type IV collagen α1 chain. It functions as an efficient inhibitor of angiogenesis and tumor growth in mouse models, but its anti-angiogenic mechanism is not completely known. Here we show that arresten significantly increases apoptosis of endothelial cells in vitro by decreasing the amount of anti-apoptotic molecules of the Bcl-family; Bcl-2 and Bcl-xL. Although the pro-apoptotic effect of arresten is endothelial cell specific in vitro, in mouse tumors arresten induced apoptosis both in endothelial and tumor cells. The tumor cell apoptosis is likely an indirect effect due to the inhibition of blood vessel growth into the tumor. The active site of arresten was localized by deletion mutagenesis within the C-terminal half of the molecule. We have previously shown that arresten binds to α1β1 integrin on human umbilical vein endothelial cells. However, the microvascular endothelial cells (MLECs) are more important in the context of tumor vasculature. We show here that arresten binds also to the microvascular endothelial cells via α1β1 integrin. Furthermore, it has no effect on Matrigel neovascularization or the viability of integrin α1 null MLECs. Tumors implanted on integrin α1 deficient mice show no integrin α1 expression in the host-derived vascular endothelium, and thus arresten does not inhibit the tumor growth. Collectively, this data sheds more light into the anti-angiogenic mechanism of arresten.  相似文献   
105.
106.
Kaposi's sarcoma-associated herpesvirus (KSHV) (human herpesvirus 8) binds to adherent target cell surface heparan sulfate molecules via its envelope glycoproteins gB and gpK8.1A, to integrins via gB, to the transporter CD98/xCT complex, and possibly to another molecule(s). This is followed by virus entry overlapping with the induction of preexisting host cell signal pathways, such as focal adhesion kinase, Src, phosphatidylinositol 3-kinase (PI3-K), Rho-GTPases, protein kinase C-zeta, and extracellular signal-regulated kinase 1/2. Here, using hemagglutinin-tagged plasmids expressing wild-type, dominant-positive, and dominant-negative forms of RhoA in HEK (human embryonic kidney) 293 cells, we investigated the role of RhoA-GTPase in virus entry. The dominant-negative form of RhoA GTPase and treatment of target cells with Clostridium difficile toxin B (CdTxB), a specific inactivator of Rho-GTPases, significantly blocked KSHV entry. KSHV infection induced closely similar levels of FAK and PI3-K in all three cell types. In contrast, very strong Src activation was observed in KSHV-infected dominant-positive RhoA cells compared to wild-type cells, and only moderate Src activation was seen in dominant-negative cells. Inhibition of Src activation by CdTxB and reduction of RhoA activation by Src inhibitors suggest that KSHV-induced Src is involved in RhoA activation, which in turn is involved in a feedback-sustained activation of Src. Since the decreased entry in RhoA dominant-negative cells may be due to inefficient signaling downstream of RhoA, we examined the induction of RhoA-activated Dia-2, which is also known to induce Src. Dia-2 coimmunoprecipitated with activated Src, which was inhibited by Src inhibitors, in the infected cells. Together with the reduced virus entry in RhoA dominant-negative cells, these results suggest that activated RhoA-dependent Dia-2 probably functions as a link between RhoA and Src in KSHV-infected cells, mediating the sustained Src activation, and that KSHV-induced Src and RhoA play roles in facilitating entry into adherent target cells.  相似文献   
107.
Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of alphavbeta3 integrin. Mice lacking uPAR (Plaur-/-) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active beta3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate alphavbeta3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of alphavbeta3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.  相似文献   
108.

Aim

We investigated the invasion history of Lycium ferocissimum, a spine-covered shrub native to South Africa that was introduced to Australia in the mid-1800s, and has since developed into a damaging invasive plant of undisturbed landscapes and pastures. In addition to identifying the provenance of the Australian plants, we tested for evidence of admixture, and contrasted genetic diversity and structuring across the native and introduced ranges.

Location

Samples were collected across South Africa (24 localities) and Australia (26 localities).

Methods

We used genotyping-by-sequencing (3117 SNPs across 381 individuals) to assess population genetic structuring in L. ferocissimum across Australia and South Africa. Coalescent analyses were used to explicitly test contrasting invasion scenarios.

Results

Clear geographic genetic structuring was detected across South Africa, with distinct clusters in the Eastern and Western Cape provinces. The L. ferocissimum plants in Australia form their own genetic cluster, with a similar level of genetic diversity as plants in South Africa. Coalescent analyses demonstrated that the lineage in Australia was formed by admixture between Eastern Cape and Western Cape plants, with most of the genetic material from the Australian lineage originating from the Western Cape. Our analyses suggest that L. ferocissimum plants were originally introduced to South Australia, though it is unclear whether admixture occurred before or after its introduction to Australia. We detected little evidence of geographic genetic structure across Australia, although many of the populations were genetically distinct from one another.

Main Conclusions

Our results illustrate how admixture can result in genetically diverse and distinct invasive populations. The complex invasion history of L. ferocissimum in Australia poses particular challenges for biological control. We suggest potential biological control agents should be screened against admixed plants (in addition to plants from the Eastern and Western Cape) to test whether they provide effective control of the genetically distinct invasive lineage.  相似文献   
109.
Our earlier studies had shown that as fungi age, many of their vital functions decrease; in Rhizoctonia solani, protein synthesis is one of the functions so affected. We now find that the ability to methylate tRNA, a vital component of the protein synthesizing system, also decreases with age. This methylation of Escherichia coli tRNA by R. solani methylase preparations increased with the concentration of enzyme and with time of incubation; in both cases the rate of increase was considerably higher for preparations from young cells than for those from old cells. The methylation reaction also increased with the concentration of substrate tRNA, with temperature, at least to 45° C, and with pH to 9.0. Methylase preparations from R. solani methylated both exogenous E. coli tRNA and yeast tRNA, but were only weakly active on isolated R. solani tRNA. However, acid-precipitated methylases from R. solani were very effective in methylating the homologous exogenous tRNA. Regardless of the source of the tRNA used as substrate, the methylases from older cells were always less active than those from young cells from the same mycelium. No methylase inhibitor was detected in the fungus.  相似文献   
110.
Molecular chemoprevention by selenium: a genomic approach   总被引:6,自引:0,他引:6  
El-Bayoumy K  Sinha R 《Mutation research》2005,591(1-2):224-236
Basic research and clinical chemoprevention trials support the protective role of selenium in cancer prevention but the mechanisms based on the molecular level remain to be fully defined. This mini-review focuses only on the elucidation of the molecular mechanisms of cancer prevention by selenium using the genomics approach; target organs discussed here are breast, prostate, colon and lung. The results described here support the utility of microarray technology in delineating the molecular mechanisms of cancer prevention by selenium. These results are based on studies employing human and rodent cell lines and tissues from animal models ranging from normal to frank cancer. The dose and the form of selenium are determining factors in cancer chemoprevention. The results of the microarray analysis reviewed here indicate that selenium, independent of its form and the target organ examined, alters several genes in a manner that can account for cancer prevention. Selenium can up regulate genes related to phase II detoxification enzymes, certain selenium-binding proteins and select apoptotic genes, while down regulating those related to phase I activating enzymes and cell proliferation. Independent of tissue type, selenium arrests cells in G1 phase of cell cycle, inhibits CYCLIN A, CYCLIN D1, CDC25A, CDK4, PCNA and E2F gene expressions while induces the expressions of P19, P21, P53, GST, SOD, NQO1, GADD153 and certain CASPASES. In addition to those described above, genes such as OPN, which is mainly involved in metastasis and recently reported to be down regulated by selenium, should be considered as potential molecular marker in clinical chemoprevention trials. Collectively, literature data indicate that some of these genes that were altered by selenium are also involved in the development of human cancers described in this review. It appears that androgen receptor status may influence the effect of selenium on gene expression profile in prostate cancer; whether estrogen receptor may influence the effect of selenium on gene expression in breast cancer requires further studies. Knowledge from gene array data in combination with proteomics approaches, using homogenous population of cell types with the aid of laser capture microdissection, may provide an individualized dimension of information on cancer risk and potential targets for its prevention. The molecular (genetic) biomarkers presented in this review will provide the foundation for future studies of the chemopreventive properties of structurally varied selenium compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号