首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  2021年   2篇
  2016年   1篇
  2015年   3篇
  2012年   1篇
  2010年   4篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
41.
Section Arachis is the largest of nine sections in the genus Arachis and includes domesticated peanut, A. hypogaea L. Most species are diploids (x=10) with two tetraploids and a few aneuploids. Three genome types have been recognized in this section (A, B and D), but the genomes are not well characterized and relationships of several newly described species are uncertain. To clarify genomic relationships in section Arachis, cytogenetic information and molecular data from amplified fragment length polymorphism (AFLP) and the trnT-F plastid region were used to provide an additional insight into genome composition and species relationships. Cytogenetic information supports earlier observations on genome types of A. cruziana, A. herzogii, A. kempff-mercadoi and A. kuhlmannii but was inconclusive about the genome composition of A. benensis, A. hoehnei, A. ipaensis, A. palustris, A. praecox and A. williamsii. An AFLP dendrogram resolved species into four major clusters and showed A. hypogaea grouping closely with A. ipaensis and A. williamsii. Sequence data of the trnT-F region provided genome-specific information and showed for the first time that the B and D genomes are more closely related to each other than to the A genome. Integration of information from cytogenetics and biparentally and maternally inherited genomic regions show promise in understanding genome types and relationships in Arachis.  相似文献   
42.
Genomic DNA from a wide variety of prokaryotic and eukaryotic organisms has been assayed for the simple repeat sequence poly(dT-dG).poly(dC-dA) by Southern blotting and DNA slot blot hybridizations. Consistent with findings of others, we have found the simple alternating sequence to be present in multiple copies in all organisms in the animal kingdom (e.g., mammals, reptiles, amphibians, fish, crustaceans, insects, jellyfish, nematodes). The TG element was also found in lower eukaryotes (Saccharomyces cerevisiae, Neurospora crassa, and Dictyostelium discoideum) and at a much lower frequency in protozoans (Oxytricha fallux and Tetrahymena thermophila). The sequence was also repeated in high copy number in a higher plant (Zea mays) as well as at very high levels in a unicellular green alga (Chlamydomonas reinhardi). Although the copy number of the repeat per haploid genome was generally proportional to genome size, there was a greater-than-1,000-fold variation in the number of (TG)25/100-kb genomic DNA. By contrast, no eu-or archaebacterium--including Myxococcus xanthus, whose life cycle is very similar to that of the slime mold Dictyostelium discoideum, and Halobacter volcanii, whose genome contains other repeated sequences-- was found whose genomic DNA contained this sequence in detectable amounts. A computer search also failed to find the TG element in human mitochondrial DNA.   相似文献   
43.
Reaction of 5-enolpyruvylshikimate-3-phosphate synthase of Escherichia coli with the thiol reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) leads to a modification of only 2 of the 6 cysteines of the enzyme, with a significant loss of its enzymatic activity. Under denaturing conditions, however, all 6 cysteines of 5-enolpyruvylshikimate-3-phosphate synthase react with DTNB, indicating the absence of disulfide bridges in the native protein. In the presence of shikimate 3-phosphate and glyphosate, only 1 of the 2 cysteines reacts with the reagent, with no loss of activity, suggesting that only 1 of these cysteines is at or near the active site of the enzyme. Cyanolysis of the DTNB-inactivated enzyme with KCN leads to elimination of 5-thio-2-nitrobenzoate, with formation of the thiocyano-enzyme. The thiocyano-enzyme is fully active; it exhibits a small increase in its I50 for glyphosate (6-fold) and apparent Km for phosphoenolpyruvate (4-fold) compared to the unmodified enzyme. Its apparent Km for shikimate 3-phosphate is, however, unaltered. These results clearly establish the nonessentiality of the active site-reactive cysteine of E. coli 5-enolpyruvylshikimate-3-phosphate synthase for either catalysis or substrate binding. Perturbations in the kinetic constants for phosphoenolpyruvate and glyphosate suggest that the cysteine thiol is proximal to the binding site for these ligands. By N-[14C]ethylmaleimide labeling, tryptic mapping, and N-terminal sequencing, the 2 reactive cysteines have been identified as Cys408 and Cys288. The cysteine residue protected by glyphosate and shikimate 3-phosphate from its reaction with DTNB was found to be Cys408.  相似文献   
44.
Polyhydroxyalkanoates (PHAs) are a class of carbon and energy storage polymers produced by numerous bacteria in response to environmental limitation. The type of polymer produced depends on the carbon sources available, the flexibility of the organism’s intermediary metabolism, and the substrate specificity of the PHA biosynthetic enzymes. Ralstonia eutropha produces both the homopolymer poly-β-hydroxybutyrate (PHB) and, when provided with the appropriate substrate, the copolymer poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PHBV). A required step in production of the hydroxyvalerate moiety of PHBV is the condensation of acetyl coenzyme A (acetyl-CoA) and propionyl-CoA to form β-ketovaleryl-CoA. This activity has generally been attributed to the β-ketothiolase encoded by R. eutropha phbA. However, we have determined that PhbA does not significantly contribute to catalyzing this condensation reaction. Here we report the cloning and genetic analysis of bktB, which encodes a β-ketothiolase from R. eutropha that is capable of forming β-ketovaleryl-CoA. Genetic analyses determined that BktB is the primary condensation enzyme leading to production of β-hydroxyvalerate derived from propionyl-CoA. We also report an additional β-ketothiolase, designated BktC, that probably serves as a secondary route toward β-hydroxyvalerate production.Polyhydroxyalkanoates (PHAs) are a class of naturally occurring polymers which serve as a carbon and energy reserve in numerous bacterial species. Ralstonia eutropha (formerly designated Alcaligenes eutrophus [41]) produces the homopolymer poly(β-hydroxybutyrate) (PHB) and, when provided with propionate in the feedstock, the copolymer poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PHBV). R. eutropha is used commercially to produce PHBV, which is a biodegradable thermoplastic.The PHB biosynthetic pathway requires three enzymatic activities: a β-ketothiolase (PhbA), an NADPH-dependent acetoacetyl coenzyme A (acetoacetyl-CoA) reductase (PhbB) and a PHB synthase (PhbC). The first step in production of the homopolymer PHB is catalyzed by β-ketothiolase which condenses two acetyl-CoA molecules to form acetoacetyl-CoA. Formation of the copolymer PHBV requires the additional condensation of acetyl-CoA with propionyl-CoA to form β-ketovaleryl-CoA (Fig. (Fig.1).1). Subsequently, the acetoacetyl-CoA and β-ketovaleryl-CoA are converted into a polymer by the activities of the reductase and synthase. The genes encoding these proteins in R. eutropha reside in an operon which has been well characterized (10, 21, 22, 31, 37). Open in a separate windowFIG. 1Pathway for production of PHBV from acetyl-CoA and propionyl-CoA. β-Ketothiolase performs the condensation reactions to generate either acetoacetyl-CoA or β-ketovaleryl-CoA. These are reduced by acetoacetyl-CoA reductase (PhbB) and polymerized by PHB synthase (PhbC).The substrate specificities of these three enzymes are reportedly adequate for production of PHBV copolymer (79), but propionate-fed Escherichia coli harboring the R. eutropha phb operon produces essentially PHB homopolymer (35). Moreover, PHBV copolymer can be produced in E. coli after induction of the fatty acid β-oxidation complex, which contains a β-ketothiolase with broad substrate specificity (26, 27, 35). These data suggest that the R. eutropha PHB pathway is capable of producing copolymer, but only in the context of a second β-ketothiolase with broad substrate specificity.R. eutropha is known to produce at least two β-ketothiolases (7), and at least two distinct plasmid clones which express β-ketothiolase have been isolated from R. eutropha (37). In this work, we analyzed the substrate specificity of the PhbA β-ketothiolase and demonstrated that this enzyme catalyzes thiolysis of β-ketovaleryl-CoA very poorly. We determined that R. eutropha expresses at least two β-ketothiolases in addition to PhbA and that these additional enzymes, which we designate BktB and BktC, efficiently utilize β-ketovaleryl-CoA. We also report the isolation and characterization of bktB (β-ketothiolase B), which encodes the BktB β-ketothiolase required for efficient production of PHBV in R. eutropha.  相似文献   
45.
DNA sequences for the mitochondrial cytochrome b gene were determined for 13 species of sharks. Rates and patterns of amino acid replacement are compared for sharks and mammals. Absolute rates of cytochrome b evolution are six times slower in sharks than in mammals. Bivariate plots of the number of nonsynonymous and silent transversions are indistinguishable in the two groups, however, suggesting that the differences in amino acid replacement rates are due primarily to differences in DNA substitution rates. Patterns of amino acid replacement are also similar in the two groups. Conserved and variable regions occur in the same parts of the cytochrome b gene, and there is little evidence that the types of amino acid changes are significantly different between the groups. Similarity in the relative rates and patterns of protein change between the two groups prevails despite dramatic differences in the cellular environments of sharks and mammals. Poor penetrance of physiological differences through to rates of protein evolution provides support for the neutral theory and suggests that, for cytochrome b, patterns of evolution have been relatively constant throughout much of vertebrate history.   相似文献   
46.
47.
48.
The active site of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) has been probed using site-directed mutagenesis and inhibitor binding techniques. Replacement of a specific glycyl with an alanyl or a prolyl with a seryl residue in a highly conserved region confers glyphosate tolerance to several bacterial and plant EPSPS enzymes, suggesting a high degree of structural conservation between these enzymes. The glycine to alanine substitution corresponding to Escherichia coli EPSPS G96A increases the Ki(app) (glyphosate) of petunia EPSPS 5000-fold while increasing the Km(app)(phosphoenolpyruvate) about 40-fold. Substitution of this glycine with serine, however, abolishes EPSPS activity but results in the elicitation of a novel EPSP hydrolase activity whereby EPSP is converted to shikimate 3-phosphate and pyruvate. This highly conserved region is critical for the interaction of the phosphate moiety of phosphoenolpyruvate with EPSPS.  相似文献   
49.
50.
Esophageal cancer involves multiple genetic alternations. A systematic codon usage bias analysis was completed to investigate the bias among the esophageal cancer responsive genes. GC-rich genes were low (average effective number of codon value was 49.28). CAG and GTA are over-represented and under-represented codons, respectively. Correspondence analysis, neutrality plot, and parity rule 2 plot analysis confirmed the dominance over mutation pressure in modulating the codon usage pattern of genes linked with esophageal cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号