首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  58篇
  2021年   2篇
  2016年   1篇
  2015年   3篇
  2012年   1篇
  2010年   4篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
21.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disease that manifests as syncope or sudden death during high adrenergic tone in the absence of structural heart defects. It is primarily caused by mutations in the cardiac ryanodine receptor (RyR2). The mechanism by which these mutations cause arrhythmia remains controversial, with discrepant findings related to the role of the RyR2 binding protein FKBP12.6. The purpose of this study was to characterize a novel RyR2 mutation identified in a kindred with clinically diagnosed CPVT.Single-strand conformational polymorphism analysis and direct DNA sequencing were used to screen the RyR2 gene for mutations. Site-directed mutagenesis was employed to introduce the mutation into the mouse RyR2 cDNA. The impact of the mutation on the interaction between RyR2 and a 12.6 kDa FK506 binding protein (FKBP12.6) was determined by immunoprecipitation and immunoblotting and its effect on RyR2 function was characterized by single cell Ca2+ imaging and [3H]ryanodine binding.A novel CPVT mutation, E189D, was identified. The E189D mutation does not alter the affinity of the channel for FKBP12.6, but it increases the propensity for store-overload-induced Ca2+ release (SOICR). Furthermore, the E189D mutation enhances the basal channel activity of RyR2 and its sensitivity to activation by caffeine.The E189D RyR2 mutation is causative for CPVT and functionally increases the propensity for SOICR without altering the affinity for FKBP12.6. These observations strengthen the notion that enhanced SOICR, but not altered FKBP12.6 binding, is a common mechanism by which RyR2 mutations cause arrhythmias.Key words: arrhythmia, calcium, death sudden, genetics, ion channels  相似文献   
22.
The production of polyhydroxyalkanoates in plants is an interesting commercial prospect due to lower carbon feedstock costs and capital investments. The production of poly-(3-hydroxybutyrate) has already been successfully demonstrated in plant plastids, and the production of more complex polymers is under investigation. Using a mathematical simulation model this paper outlines the theoretical prospects of producing the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-3HV)] in plant plastids. The model suggests that both the 3HV/3HB ratio and the copolymer production rate will vary considerably between dark and light conditions. Using metabolic control analysis we predict that the beta-ketothiolase predominately controls the copolymer production rate, but that the activity of all three enzymes influence the copolymer ratio. Dynamic simulations further suggest that controlled expression of the three enzymes at different levels may enable desirable changes in both the copolymer production rate and the 3HV/3HB ratio. Finally, we illustrate that natural variations in substrate and cofactor levels may have a considerable impact on both the production rate and the copolymer ratio, which must be taken into account when constructing a production system.  相似文献   
23.
24.
Axillary clearance provides important prognostic information but is associated with significant morbidity. Sentinel node biopsy can provide staging .141 patients with node negative early breast cancers-tumour size less than 1.5 cm measured clinically or by imaging had guided axillary sampling (sentinel lymph node biopsy in combination with axillary sampling). Four node axillary sampling improved the detection rate of axillary node metastases by 13.6% as compared to blue dye sentinel node biopsy alone. Positive sampled nodes strongly indicated the likelihood of further metastatic being revealed by axillary dissection (67%). Negative sampled nodes in combination with a positive sentinel node biopsy were associated with a much lower rate of further nodal involvement in the axillary clearance (8%).  相似文献   
25.
26.
27.
28.
In an initial communication [May, S. W., Mueller, P. W., Padgette, S. R., Herman, H. H., & Phillips, R. S. (1983) Biochem. Biophys. Res. Commun. 110, 161-168], we reported that 1-phenyl-1-(aminomethyl)ethene hydrochloride (PAME) is an olefinic substrate for dopamine beta-monooxygenase (DBM; EC 1.14.17.1) which inactivates the enzyme in an apparent mechanism-based manner. The present study further characterizes this reaction. The inactivation reaction yields kinact = 0.23 min-1 at pH 5.0 and 37 degrees C and is strictly dependent on reductant (ascorbate) and oxygen. The DBM/PAME substrate reaction (apparent kcat = 14 s-1), shown to be stimulated by fumarate, gives the corresponding epoxide as product, identified by derivatization with 4-(p-nitrobenzyl)pyridine. However, the lack of DBM inhibition by alpha-methylstyrene oxide, and the observation of identical PAME/DBM inactivation rates in the absence and presence of preformed enzymatic PAME epoxide, indicates that free epoxide is not the inactivating species. A structure-activity study revealed that 4-hydroxylation of PAME (to give 4-HOPAME) increases both kinact (0.81 min-1) and apparent kcat (56 s-1) values, while 3-hydroxylation (to give 3-HOPAME) greatly diminishes inactivation activity while retaining substrate activity (apparent kcat = 47 s-1). 4-Hydroxy-alpha-methylstyrene was found to be a DBM inhibitor (kinact = 0.53 min-1) with weak substrate activity (apparent kcat = 0.71 s-1), while 3-hydroxy-alpha-methylstyrene and alpha-(cyanomethyl) styrene were found not to exhibit detectable DBM substrate activity and only weak inhibitory activity. 3-Phenylpropargylamine hydrochloride showed no detectable DBM substrate activity but rapidly inactivated the enzyme. A new substrate activity for DBM was discovered, N-dealkylation of N-phenylethylenediamine and N-methyl-N-phenylethylenediamine, and the lack of O-dealkylation activity with phenyl 2-aminoethyl ether and 4-hydroxyphenyl 2-aminoethyl ether indicates that DBM N-dealkylation proceeds via initial one-electron abstraction from the benzylic nitrogen heteroatom. With this new substrate and inhibitor reactivity information in hand, along with the other known substrate reactions, a DBM oxygenation mechanism analogous to that for cytochrome P-450 is proposed.  相似文献   
29.
Aging is associated with a decline in immune function (immunosenescence), a situation known to correlate with increased incidence of cancer, infectious and degenerative diseases. Innate, cellular and humoral immunity all exhibit increased deterioration with age. A decrease in functional competence of individual natural killer (NK) cells is found with advancing age. Macrophages and granulocytes show functional decline in aging as evidenced by their diminished phagocytic activity and impairment of superoxide generation. There is also marked shift in cytokine profile as age advances, e.g., CD3+ and CD4+ cells decline in number whereas CD8+ cells increase in elderly individuals. A decline in organ specific antibodies occurs causing reduced humoral responsiveness. Circulating melatonin decreases with age and in recent years much interest has been focused on its immunomodulatory effect. Melatonin stimulates the production of progenitor cells for granulocytes-macrophages. It also stimulates the production of NK cells and CD4+ cells and inhibits CD8+ cells. The production and release of various cytokines from NK cells and T-helper lymphocytes also are enhanced by melatonin. Melatonin presumably regulates immune function by acting on the immune-opioid network, by affecting G protein-cAMP signal pathway and by regulating intracellular glutathione levels. Melatonin has the potential therapeutic value to enhance immune function in aged individuals and in patients in an immunocompromised state.  相似文献   
30.
Cyclic shifts of calcium in the exoskeleton and soft tissues,as they are related to the intermolt cycle in crayfish, arereviewed. Regulatory factors, derived from the eyestalk, influencelevels of exoskeletal calcium; eyestalk extracts prepared fromanimals in premolt decrease shell calcium, while reciprocallyextracts from animals in intermolt increase it when these hormonalsources are injected into animals in the premolt stage (D0-D4). In addition, premolt eyestalk extract results in an increasein gastrolith calcium. In the exchange of calcium between theanimal and its environment there is evidence for differentialdepositionof recently available calcium in the exoskeleton. Further, intermoltand early premolt animals maintained in Ca45-labelled waterfor 15 days concentrate it 4 and 3—fold in the exoskeletonand stomach, respectively. However, removal of a molt-inhibitingfactor through ablation of eyestalks results in a 20 and 40—foldincrease in incorporation inthese same sites relative to environmentalconcentrations. Treatment with mammalian parathyroid extract mobilizes bothexoskeletal and gastric calciumand leads to a rise in bloodcalcium. However, there is little or no effect on levels ofexoskeletal citric acid. Further, citric acid is higher in thecrayfish carapace during stage C, the period of mineralization,than in stage D, the period of demineralization. There are both similarities and differences between the effectsof crustacean and mammalianregulating factors with respect tothe direction and extent of mineralization. Biochemical studiesshould elucidate the mechanisms regulated by these hormones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号