首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   29篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   9篇
  2018年   12篇
  2017年   10篇
  2016年   21篇
  2015年   21篇
  2014年   23篇
  2013年   28篇
  2012年   44篇
  2011年   36篇
  2010年   16篇
  2009年   18篇
  2008年   23篇
  2007年   21篇
  2006年   14篇
  2005年   13篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1975年   2篇
  1974年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有452条查询结果,搜索用时 125 毫秒
151.
152.
Activity decreases, or deactivations, of midline and parietal cortical brain regions are routinely observed in human functional neuroimaging studies that compare periods of task-based cognitive performance with passive states, such as rest. It is now widely held that such task-induced deactivations index a highly organized 'default-mode network' (DMN): a large-scale brain system whose discovery has had broad implications in the study of human brain function and behavior. In this work, we show that common task-induced deactivations from rest also occur outside of the DMN as a function of increased task demand. Fifty healthy adult subjects performed two distinct functional magnetic resonance imaging tasks that were designed to reliably map deactivations from a resting baseline. As primary findings, increases in task demand consistently modulated the regional anatomy of DMN deactivation. At high levels of task demand, robust deactivation was observed in non-DMN regions, most notably, the posterior insular cortex. Deactivation of this region was directly implicated in a performance-based analysis of experienced task difficulty. Together, these findings suggest that task-induced deactivations from rest are not limited to the DMN and extend to brain regions typically associated with integrative sensory and interoceptive processes.  相似文献   
153.

Objective

Septic shock has a clinical mortality rate approaching fifty percent. The major clinical manifestations of sepsis are due to the dysregulation of the host''s response to infection rather than the direct consequences of the invading pathogen. Central to this initial immunologic response is the activation of leukocytes and microvascular endothelium resulting in cardiovascular instability, lung injury and renal dysfunction. Due to the primary role of leukocyte activation in the sepsis syndrome, a synthetic biomimetic membrane, called a selective cytopheretic device (SCD), was developed to bind activated leukocytes. The incorporation of the SCD along an extracorporeal blood circuit coupled with regional anticoagulation with citrate to lower blood ionized calcium was devised to modulate leukocyte activation in sepsis.

Design

Laboratory investigation.

Setting

University of Michigan Medical School.

Subjects

Pigs weighing 30-35 kg.

Interventions

To assess the effect of the SCD in septic shock, pigs were administered 30×1010 bacteria/kg body weight of Escherichia coli into the peritoneal cavity and within 1 hr were immediately placed in an extracorporeal circuit containing SCD.

Measurements and Main Results

In this animal model, the SCD with citrate compared to control groups without the SCD or with heparin anticoagulation ameliorated the cardiovascular instability and lung sequestration of activated leukocytes, reduced renal dysfunction and improved survival time compared to various control groups. This effect was associated with minimal elevations of systemic circulating neutrophil activation.

Conclusions

These preclinical studies along with two favorable exploratory clinical trials form the basis of an FDA-approved investigational device exemption for a pivotal multicenter, randomized control trial currently underway.  相似文献   
154.
Pino S  Costanzo G  Giorgi A  Di Mauro E 《Biochemistry》2011,50(14):2994-3003
We report two reactions of RNA G:C sequences occurring nonenzymatically in water in the absence of any added cofactor or metal ion: (a) sequence complementarity-driven terminal ligation and (b) complementary sequence adaptor-driven multiple tandemization. The two abiotic reactions increase the chemical complexity of the resulting pool of RNA molecules and change the Shannon information of the initial population of sequences.  相似文献   
155.
156.
Childhood excess weight is probably associated with, or reflected in, parental attitudes. The objective of this study was to study the relationships between childhood excess weight and parental attitudes. The study subjects were 53 boys and 56 girls, aged 6-10, regularly attending schools in Porto Alegre, south Brazil, and one of their parents or caregivers. Attitudes of the parents or caregivers were assessed by the Child Feeding Questionnaire (CFD). Weight and height of the children were measured, parents self-reported their weight and height and body mass indexes were calculated for both. The WHO criteria for overweight and obesity were used for the adults. The CDC criteria for overweight and risk for overweight were used for the corresponding children. Boys presented excess weight more often than girls. The parents of children with excess weight showed higher scores for perceived child weight, concern about child weight, restriction and monitoring. In logistic regression, excess weight in children was associated with perceived child weight, restriction and male sex; pressure to eat was negatively associated with excess BMI. In Porto Alegre, south Brazil, excess body weight in children aged 6-10 is associated with parental perceived child weight and concern about it, monitoring and restriction; being a boy increases the odds of being overweight.  相似文献   
157.
Reversible glycosylated polypeptides (RGPs) are highly conserved plant-specific proteins, which can perform self-glycosylation. These proteins have been shown essential in plants yet its precise function remains unknown. In order to understand the function of this self-glycosylating polypeptide, it is important to establish what factors are involved in the regulation of the RGP activity. Here we show that incubation at high ionic strength produced a high self-glycosylation level and a high glycosylation reversibility of RGP from Solanum tuberosum L. In contrast, incubation at low ionic strength led to a low level of glycosylation and a low glycosylation reversibility of RGP. The incubation at low ionic strength favored the formation of high molecular weight RGP-containing forms, whereas incubation at high ionic strength produced active RGP with a molecular weight similar to the one expected for the monomer. Our data also showed that glycosylation of RGP, in its monomeric form, was highly reversible, whereas, a low reversibility of the protein glycosylation was observed when RGP was part of high molecular weight structures. In addition, glycosylation of RGP increased the occurrence of non-monomeric RGP-containing forms, suggesting that glycosylation may favor multimer formation. Finally, our results indicated that RGP from Arabidopsis thaliana and Pisum sativum are associated to golgi membranes, as part of protein complexes. A model for the regulation of the RGP activity and its binding to golgi membranes based on the glycosylation of the protein is proposed where the sugars linked to oligomeric form of RGP in the golgi may be transferred to acceptors involved in polysaccharide biosynthesis.  相似文献   
158.
Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants were transformed with a gene for choline oxidase (codA) from Arthrobacter globiformis. The gene product (CODA) was targeted to the chloroplasts (Chl-codA), cytosol (Cyt-codA) or both compartments simultaneously (ChlCyt-codA). These three transgenic plant types accumulated different amounts and proportions of glycinebetaine (GB) in their chloroplasts and cytosol. Targeting CODA to either the cytosol or both compartments simultaneously increased total GB content by five- to sixfold over that measured from the chloroplast targeted lines. Accumulation of GB in codA transgenic plants was tissue dependent, with the highest levels being recorded in reproductive organs. Despite accumulating, the lowest amounts of GB, Chl-codA plants exhibited equal or higher degrees of enhanced tolerance to various abiotic stresses. This suggests that chloroplastic GB is more effective than cytosolic GB in protecting plant cells against chilling, high salt and oxidative stresses. Chloroplastic GB levels were positively correlated with the degree of oxidative stress tolerance conferred, whereas cytosolic GB showed no such a correlation. Thus, an increase in total GB content does not necessarily lead to enhanced stress tolerance, but additional accumulation of chloroplastic GB is likely to further raise the level of stress tolerance beyond what we have observed.  相似文献   
159.
The cellular prion protein (PrPC) is a Cu2+ binding protein connected to the outer cell membrane. The molecular features of the Cu2+ binding sites have been investigated and characterized by spectroscopic experiments on PrPC-derived peptides and the recombinant human full-length PrPC (hPrP-[23-231]). The hPrP-[23-231] was loaded with 63Cu under slightly acidic (pH 6.0) or neutral conditions. The PrPC/Cu2+-complexes were investigated by extended X-ray absorption fine structure (EXAFS), electron paramagnetic resonance (EPR), and electron nuclear double resonance (ENDOR). For comparison, peptides from the copper-binding octarepeat domain were investigated in different environments. Molecular mechanics computations were used to select sterically possible peptide/Cu2+ structures. The simulated EPR, ENDOR, and EXAFS spectra of these structures were compared with our experimental data. For a stoichiometry of two octarepeats per copper the resulting model has a square planar four nitrogen Cu2+ coordination. Two nitrogens belong to imidazole rings of histidine residues. Further ligands are two deprotonated backbone amide nitrogens of the adjacent glycine residues and an axial oxygen of a water molecule. Our complex model differs significantly from those previously obtained for shorter peptides. Sequence context, buffer conditions and stoichiometry of copper show marked influence on the configuration of copper binding to PrPC. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
160.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100-300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( - )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号