首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
  国内免费   1篇
  2019年   1篇
  2016年   1篇
  2015年   5篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1990年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有37条查询结果,搜索用时 203 毫秒
21.

Background

Caesarean section (CS) rates are rising worldwide. In the Netherlands, the most significant rise is observed in healthy women with a singleton in vertex position between 37 and 42 weeks gestation, whereas it is doubtful whether an improved outcome for the mother or her child was obtained. It can be hypothesized that evidence-based guidelines on CS are not implemented sufficiently. Therefore, the present study has the following objectives: to develop quality indicators on the decision to perform a CS based on key recommendations from national and international guidelines; to use the quality indicators in order to gain insight into actual adherence of Dutch gynaecologists to guideline recommendations on the performance of a CS; to explore barriers and facilitators that have a direct effect on guideline application regarding CS; and to develop, execute, and evaluate a strategy in order to reduce the CS incidence for a similar neonatal outcome (based on the information gathered in the second and third objectives).

Methods

An independent expert panel of Dutch gynaecologists and midwives will develop a set of quality indicators on the decision to perform a CS. These indicators will be used to measure current care in 20 hospitals with a population of 1,000 women who delivered by CS, and a random selection of 1,000 women who delivered vaginally in the same period. Furthermore, by interviewing healthcare professionals and patients, the barriers and facilitators that may influence the decision to perform a CS will be measured. Based on the results, a tailor-made implementation strategy will be developed and tested in a controlled before-and-after study in 12 hospitals (six intervention, six control hospitals) with regard to effectiveness, experiences, and costs.

Discussion

This study will offer insight into the current CS care and into the hindering and facilitating factors influencing obstetrical policy on CS. Furthermore, it will allow definition of patient categories or situations in which a tailor-made implementation strategy will most likely be meaningful and cost effective, without negatively affecting the outcome for mother and child.

Trial registration

http://www.clinicaltrials.gov: NCT01261676  相似文献   
22.
CD34+ hematopoietic stem/progenitor cells (HSPCs) are vasculogenic and hypoxia is a strong stimulus for the vasoreparative functions of these cells. Angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1–7)/Mas receptor (MasR) pathway stimulates vasoprotective functions of CD34+ cells. This study tested if ACE2 and MasR are involved in the hypoxic stimulation of CD34+ cells. Cells were isolated from circulating mononuclear cells derived from healthy subjects (n = 46) and were exposed to normoxia (20% O2) or hypoxia (1% O2). Luciferase reporter assays were carried out in cells transduced with lentivirus carrying ACE2- or MasR- or a scramble-3′-untranslated region gene with a firefly luciferase reporter. Expressions or activities of ACE, angiotensin receptor Type 1 (AT1R), ACE2, and MasR were determined. In vitro observations were verified in HSPCs derived from mice undergoing hindlimb ischemia (HLI). In vitro exposure to hypoxia-increased proliferation and migration of CD34+ cells in basal conditions or in response to vascular endothelial growth factor (VEGF) or stromal-derived factor 1α (SDF) compared with normoxia. Expression of ACE2 or MasR was increased relative to normoxia while ACE or AT1R expressions were unaltered. Luciferase activity was increased by hypoxia in cells transfected with the luciferase reporter plasmids coding for the ACE2- or MasR promoters relatively to the control. The effects of hypoxia were mimicked by VEGF or SDF under normoxia. Hypoxia-induced ADAM17-dependent shedding of functional ACE2 fragments. In mice undergoing HLI, increased expression/activity of ACE2 and MasR were observed in the circulating HSPCs. This study provides compelling evidence for the hypoxic upregulation of ACE2 and MasR in CD34+ cells, which likely contributes to vascular repair.  相似文献   
23.
Fish is a very important part of the human diet in Amazonia. Near the growing cities, fish populations and individual size have decreased over the past decades. Alternatives to traditional and industrial fishing arise, including fish farming. Strategies to minimize the impact of fish farms on the environment are needed to have a regular and healthy fish supply. This is to avoid a reduction of biodiversity, a depletion of natural resources, and/or the induction of significant changes in the structure and functioning of adjacent ecosystems. Very little research has been performed on management of effluents as to maintain the quality of water resources. The present study aimed at testing the efficiency of the Amazonian aquatic macrophyte Eichhornia crassipes as a biofilter for the treatment of effluents from fish farming. In three filtering treatments (50%, 75% and 100% plant cover) and a control (0%), physical and chemical properties of the water were measured and analyzed in a nursery with fish after passing the biofilter system, with a hydraulic retention time of 24 hours. The analyzed variables showed no significant differences (p>0.05) among the treatments with 50-100% cover, indicating that 50% cover would be enough for a good efficiency of the biofilter. All parameters were reduced after passage of the biofilter under the presence of E. crassipes: 73.7% for electrical conductivity, 15% for pH, 84.5% for turbidity, 86.8% for nitrite, 69% for total phosphorus, and 77.8% for orthophosphate. The concentrations of total nitrogen, nitrate and ammonium ions were not significantly changed (p>0.05). We conclude that E. crassipes is effective in improving the quality of effluents from fish farming, with less efficiency for nitrogen compounds. Our treatment system can be adopted by small and medium-sized farmers, aiming at a sustainable employment of the activity.  相似文献   
24.
Random amplified polymorphic DNA (RAPD) analysis was adapted for genomic identification of cell cultures and evaluation of DNA stability in cells of different origin at different culture passages. DNA stability was observed in cultures after no more than 5 passages. Adipose-derived stromal cells demonstrated increased DNA instability. RAPD fragments from different cell lines after different number of passages were cloned and sequenced. The chromosomal localization of these fragments was identified and single-nucleotide variations in RAPD fragments isolated from cell lines after 8–12 passages were revealed. Some of them had permanent localization, while most variations demonstrated random distribution and can be considered as de novo mutations.  相似文献   
25.
Antigen-presenting cells survey their environment and present captured antigens bound to major histocompatibility complex (MHC) molecules. Formation of MHC-antigen complexes occurs in specialized compartments where multiple protein trafficking routes, still incompletely understood, converge. Autophagy is a route that enables the presentation of cytosolic antigen by MHC class II molecules. Some reports also implicate autophagy in the presentation of extracellular, endocytosed antigen by MHC class I molecules, a pathway termed “cross-presentation.” The role of autophagy in cross-presentation is controversial. This may be due to studies using different types of antigen presenting cells for which the use of autophagy is not well defined. Here we report that active use of autophagy is evident only in DC subtypes specialized in cross-presentation. However, the contribution of autophagy to cross-presentation varied depending on the form of antigen: it was negligible in the case of cell-associated antigen or antigen delivered via receptor-mediated endocytosis, but more prominent when the antigen was a soluble protein. These findings highlight the differential use of autophagy and its machinery by primary cells equipped with specific immune function, and prompt careful reassessment of the participation of this endocytic pathway in antigen cross-presentation.  相似文献   
26.
Using freeze-fracture electron microscopy we have recently shown that non-photochemical quenching (NPQ), a mechanism of photoprotective energy dissipation in higher plant chloroplasts, involves a reorganization of the pigment-protein complexes within the stacked grana thylakoids.1 Photosystem II light harvesting complexes (LHCII) are reorganized in response to the amplitude of the light driven transmembrane proton gradient (ΔpH) leading to their dissociation from photosystem II reaction centers and their aggregation within the membrane.1 This reorganization of the PSII-LHCII macrostructure was found to be enhanced by the formation of zeaxanthin and was associated with changes in the mobility of the pigment-protein complexes therein.1 We suspected that the structural changes we observed were linked to the ΔpH-induced changes in thylakoid membrane thickness that were first observed by Murikami and Packer.2,3 Here using thin-section electron microscopy we show that the changes in thylakoid membrane thickness do not correlate with ΔpH per se but rather the amplitude of NPQ and is thus affected by the de-epoxidation of the LHCII bound xanthophyll violaxanthin to zeaxanthin. We thus suggest that the change in thylakoid membrane thickness occurring during NPQ reflects the conformational change within LHCII proteins brought about by their protonation and aggregation within the membrane.Key words: nonphotochemical quenching, photoprotection, LHCII, photosystem II, thylakoid membrane  相似文献   
27.
Understanding plant response to wind is complicated as this factor entails not only mechanical stress, but also affects leaf microclimate. In a recent study, we found that plant responses to mechanical stress (MS) may be different and even in the opposite direction to those of wind. MS-treated Plantago major plants produced thinner more elongated leaves while those in wind did the opposite. The latter can be associated with the drying effect of wind as is further supported by data on petiole anatomy presented here. These results indicate that plant responses to wind will depend on the extent of water stress. It should also be recognized that the responses to wind may differ between different parts of a plant and between plant species. Physiological research on wind responses should thus focus on the signal sensing and transduction of both the mechanical and drought signals associated with wind, and consider both plant size and architecture.Key words: biomechanics, leaf anatomy, phenotypic plasticity, plant architecture, signal transduction thigmomorphogenesis, windWind is one of the most ubiquitous environmental stresses, and can strongly affect development, growth and reproductive yield in terrestrial plants.13 In spite of more than two centuries of research,4 plant responses to wind and their underlying mechanisms remain poorly understood. This is because plant responses to mechanical movement themselves are complicated and also because wind entails not only mechanical effects, but also changes in leaf gas and heat exchange.57 Much research on wind has focused primarily on its mechanical effect. Notably, several studies that determine plant responses to mechanical treatments such as flexing, implicitly extrapolate their results to wind effects.810 Our recent study11 showed that this may lead to errors as responses to wind and mechanical stimuli (in our case brushing) can be different and even in the opposite direction. In this paper, we first separately discuss plant responses to mechanical stimuli, and other wind-associated effects, and then discuss future challenges for the understanding of plant responses to wind.It is often believed that responses to mechanical stress (thigmomorphogenesis) entail the production of thicker and stronger plant structures that resist larger forces. This may be true for continuous unidirectional forces such as gravity, however for variable external forces (such as wind loading or periodic flooding) avoiding such mechanical stress by flexible and easily reconfigurable structures can be an alternative strategy.1214 How plants adapt or acclimate to such variable external forces depends on the intensity and frequency of stress and also on plant structures. Reduced height growth is the most common response to mechanical stimuli.15,16 This is partly because such short stature increases the ability of plants to both resist forces (e.g., real-locating biomass for radial growth rather than elongation growth), and because small plants experience smaller drag forces (Fig. 1). Some plant species show a resistance strategy in response to mechanical stress by increasing stem thickness1,10 and tissue strength.7 But other species show an avoidance strategy by a reduction in stem or petiole thickness and flexural rigidity in response to MS.11,1518 These different strategies might be associated with plant size and structure. Stems of larger plants such as trees and tall herbs are restricted in the ability to bend as they carry heavy loads7,10,19 (Fig. 1). Conversely short plants are less restricted in this respect and may also be prone to trampling for which stress-avoidance would be the only viable strategy.18,20 Systematic understanding of these various responses to mechanical stress remains to be achieved.Open in a separate windowFigure 1A graphical representation of how wind effects can be considered to entail both a drying and a mechanical effect. Adaptation or acclimation to the latter can be through a force resistance strategy or a force avoidance strategy, the benefit of which may depend on the size and architecture of plants as well as the location of a given structure within a plant.Wind often enhances water stress by reducing leaf boundary layers and reduces plant temperature by transpiration cooling. The latter effect may be minor,11 but the former could significantly affect plant development. Anten et al. (2010) compared phenotypic traits and growth of Plantago major that was grown under mechanical stimuli by brushing (MS) and wind in the factorial design. Both MS and wind treatments reduced growth and influenced allocation in a similar manner. MS plants, however, had more slender petioles and narrower leaf blades while wind exposed plants exhibited the opposite response having shorter and relatively thicker petioles and more round-shaped leaf blades. MS plants appeared to exhibit stress avoidance strategy while such responses could be compensated or overridden by water stress in wind exposure.11 A further analysis of leaf petiole anatomy (Fig. 2) supports this view. The vascular fraction in the petiole cross-section was increased by wind but not by MS, suggesting that higher water transport was required under wind. Our results suggest that drying effect of wind can at least to some extent override its mechanical effect.Open in a separate windowFigure 2Representative images of petiole cross-sections of Plantago major grown in 45 days in continuous wind and/or mechanical stimuli (A–D). Petiole cross-section area (E) and vascular bundle fraction in the cross-section of petiole (F). mean + SD (n = 12) are shown. Significance levels of ANOVA; ***p < 0.001, **p < 0.01, *p < 0.05, ns p > 0.05.Physiological knowledge on plant mechanoreception and signal transduction has been greatly increased during the last decades. Plants sense mechanical stimuli through membrane strain with stretch activated channels21 and/or through some linker molecules connecting the cell wall, plasma membrane and cytoskeleton.4,22,23 This leads to a ubiquitous increase in intracellular Ca2+ concentration. The increased Ca2+ concentration is sensed by touch induced genes (TCHs),24,25 which activates downstream transduction machineries including a range of signaling molecules and phytohormones, consequently altering physiological and developmental processes.26 Extending this knowledge to understand plant phenotypic responses to wind however remains a challenge. As responses to wind have been found to differ among parts of a plant (e.g., terminal vs. basal stem) and also across species, physiological studies should be extended to the whole-plant as integrated system rather than focusing on specific tissue level. Furthermore to understand the general mechanism across species, it is required to study different species from different environmental conditions. Advances in bioinformatics, molecular and physiological research will facilitate cross-disciplinary studies to disentangle the complicated responses of plants to wind.  相似文献   
28.
29.
Tannic acid-stained microtubules with 12, 13, and 15 protofilaments   总被引:8,自引:8,他引:0       下载免费PDF全文
Subunit structure in the walls of sectioned microtubules was first noted by Ledbetter and Porter (6), who clearly showed that certain microtubules of plant meristematic cells have 13 wall protofilaments when seen in cross section. Earlier, protofilaments of microtubular elements had been described in negatively stained material, although exact counts of their number were difficult to obtain. In microtubular elements of axonemes, some success has been achieved in visualizing protofilaments in conventionally fixed and sectioned material (8, 10); much less success has been achieved in identifying and counting protofilaments of singlet cytoplasmic microtubules. By using glutaraldehyde-tannic acid fixation, as described by Misuhira and Futaesaku (7), Tilney et al. (12) studied microtubules from a number of sources and found that all have 13 protofilaments comprising their walls. These authors note that "...the number of subunits and their arrangement as protofilaments appear universal...". Preliminary studies of ventral nerve cord of crayfish fixed in glutaraldehyde-tannic acid indicated that axonal microtubules in this material possess only 12 protofilaments (4). On the basis of this observation, tannic acid preparations of several other neuronal and non-neuronal systems were examined. Protofilaments in microtubules from these several cell types are clearly demonstrated, and counts have been made which show that some kinds of microtubules have more or fewer protofilaments than the usual 13 and that at least one kind of microtubule has an even rather than an odd number.  相似文献   
30.
The cps cluster of Escherichia coli K-12 comprises genes involved in synthesis of capsular polysaccharide colanic acid. Part of the E. coli K-12 cps region has been cloned and sequenced and compared to its Salmonella enterica LT2 counterpart. The cps genes from the two organisms are homologous; in the case of the LT2 genes, with G+C content of 0.61 and codons characteristic of high G+C species, it seems clear that they have been acquired relatively recently by lateral transfer from a high G+C species. The K-12 form of these cps genes is closely related to those of LT2 so must derive from the same high G+C species, but it appears to have transferred much earlier such that random genetic drift has brought P3 (the corrected G+C content of codon base 3) down from 0.77 to 0.64, more than halfway to the E. coli average of 0.57. We estimate, using an equation developed by Sueoka, that the lateral transfer to E. coli took place approximately 45 million years ago. This is the first report we are aware of demonstrating the expected adjustment of P3 after lateral transfer between species with different G+C content DNA.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号