首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   19篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1983年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1932年   1篇
  1923年   1篇
  1880年   3篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
41.
Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis.  相似文献   
42.
Rhizobium japonicum 122 DES bacteroids from soybean nodules possess an active H2-oxidizing system that recycles all of the H2 lost through nitrogenase-dependent H2 evolution. The addition of 72 μM H2 to suspensions of bacteroids increased O2 uptake 300% and the rate of C2H2 reduction 300 to 500%. The optimal partial pressure of O2 was increased, and the partial pressure of O2 range for C2H2 reduction was extended by adding H2. A supply of succinate to bacteroids resulted in effects similar to those obtained by adding H2. Both H2 and succinate provided respiratory protection for the N2-fixing system in bacteroids. The oxidation of H2 by bacteroids increased the steady-state pool of ATP by 20 to 40%. In the presence of 50 mM iodoacetate, which caused much greater inhibition of endogenous respiration than of H2 oxidation, the addition of H2 increased the steady-state pool of ATP in bacteroids by 500%. Inhibitor evidence and an absolute requirement for O2 indicated that the H2-stimulated ATP synthesis occurred through oxidative phosphorylation. In the presence of 50 mM iodoacetate, H2-dependent ATP synthesis occurred at a rate sufficient to support nitrogenase activity. The addition of H2 to H2 uptake-negative strains of R. japonicum had no effect on ATP formation or C2H2 reduction. It is concluded that the H2-oxidizing system in H2 uptake-positive bacteroids benefits the N2-fixing process by providing respiratory protection of the O2-labile nitrogenase proteins and generating ATP to support maximal rates of C2H2 reduction by oxidation of the H2 produced from the nitrogenase system.  相似文献   
43.
The sucA gene, encoding the E1 component of alpha-ketoglutarate dehydrogenase, was cloned from Bradyrhizobium japonicum USDA110, and its nucleotide sequence was determined. The gene shows a codon usage bias typical of non-nif and non-fix genes from this bacterium, with 89.1% of the codons being G or C in the third position. A mutant strain of B. japonicum, LSG184, was constructed with the sucA gene interrupted by a kanamycin resistance marker. LSG184 is devoid of alpha-ketoglutarate dehydrogenase activity, indicating that there is only one copy of sucA in B. japonicum and that it is completely inactivated in the mutant. Batch culture experiments on minimal medium revealed that LSG184 grows well on a variety of carbon substrates, including arabinose, malate, succinate, beta-hydroxybutyrate, glycerol, formate, and galactose. The sucA mutant is not a succinate auxotroph but has a reduced ability to use glutamate as a carbon or nitrogen source and an increased sensitivity to growth inhibition by acetate, relative to the parental strain. Because LSG184 grows well on malate or succinate as its sole carbon source, we conclude that B. japonicum, unlike most other bacteria, does not require an intact tricarboxylic acid (TCA) cycle to meet its energy needs when growing on the four-carbon TCA cycle intermediates. Our data support the idea that B. japonicum has alternate energy-yielding pathways that could potentially compensate for inhibition of alpha-ketoglutarate dehydrogenase during symbiotic nitrogen fixation under oxygen-limiting conditions.  相似文献   
44.
Green LS  Emerich DW 《Plant physiology》1997,114(4):1359-1368
A mutant strain of Bradyrhizobium japonicum USDA 110 devoid of [alpha]-ketoglutarate dehydrogenase activity (LSG184) was used to test whether this tricarboxylic acid cycle enzyme is necessary to support nitrogen fixation during symbiosis with soybean (Glycine max). LSG184 formed nodules about 5 d later than the wild-type strain, and the nodules, although otherwise normal in structure, contained many fewer infected host cells than is typical. At 19 d after inoculation cells infected with the mutant strain were only partially filled with bacteroids and showed large accumulations of starch, but by 32 d after inoculation the host cells infected with the mutant appeared normal. The onset of nitrogen fixation was delayed about 15 d for plants inoculated with LSG184, and the rate, on a per nodule fresh weight basis, reached only about 20% of normal. However, because nodules formed by LSG184 contained only about 20% of the normal number of bacteroids, it could be inferred that the mutant, on an individual bacteroid basis, was fixing nitrogen at near wild-type rates. Therefore, the loss of [alpha]-ketoglutarate dehydrogenase in B. japonicum does not prevent the formation or the functioning of nitrogen-fixing bacteroids in soybean.  相似文献   
45.
The effect of drought upon phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31), malate ddiydrogenase (MDH; EC 1.1.1.37), alcohol dehydrogenase (ADH; EC 1.1.1.1) and β -hydroxybulyrate dehydrogenase ( β -OH-BDH; EC 1.1.1.30) enzyme activities as well as the leghemoglobin (Lb), malate and ethanol contents of alfalfa nodules ( Medicago sativa L. cv. Aragon) were examined. Both the ieghemoglobin (Lb) content and the Lb/soluble protein ratio were significantly reduced at a nodule water potential (Ψnod) of—1.3 MPa. At lower Ψnod, Lb content decreased further, but the ratio remained unchanged. Slight stress (—1.3 MPa) drastically affected acetylene reduction activity (ARA; 60% reduction) whereas in vitro PEPC activity was main-tained at relatively constant values. As stress progressed (—2.0 MPa), a simultaneous reduction in both activities was observed. Severe stress (Ψnod lower than —2.0 MPa) stimulated in vitro PEPC. Bacteroid β -J-OH-BDH activity was stimulated by slight (—1.3 MPa) and moderate (—2.0 MPa) drought. MDH activity rose in slightly stressed nodules (Ψnod—1.3 MPa). Greater water deficits sharply decreased MDH activity to values significantly lower than those found in control nodules. Nodule malate content followed the same pattern as MDH. The plant fraction of the nodule showed constitutive ADH activity and contained ethanol. ADH was stimulated at slight (— 1.3 MPa) and moderate drought levels (—2.0 MPa). Ethanol content showed similar behavior to ADH activity. Inhibition of ARA, reduction of Lb content and stimulation of the fermentative metabolism induced by water stress suggest some reduction ira O2 availability within the nodule.  相似文献   
46.
An -ketoglutarate dehydrogenase mutant (LSG184) of Bradyrhizobium japonicum USDA110 has a delayed nodulation phenotype when inoculated onto soybean (Glycine max L.). To pinpoint the defective stage of symbiotic development, light microscopic techniques were used to monitor early responses of soybean to inoculation with the mutant as compared to the wildtype strain. Methylene blue was used to visualize curled root hairs and a convenient haematoxylin staining method was developed that could detect nodule primordia as early as 2 d after inoculation. The results demonstrate that early symbiotic events occur with normal timing after inoculation with SLG184 and that its developmental delay is first evident during the progression of nodule primordia into emergent nodules. The timing of this delay suggests that LSG184 is not deficient in Nod factor production, at least during the early stages of symbiosis, but rather may have a defect in infection thread initiation or elongation. The results further imply that the rate of development of advanced soybean nodule primordia is, in part, dependent on the metabolic capabilities of the invading bacterium.  相似文献   
47.
A procedure was developed to assess the ability of wild-type and mutant strains of Bradyrhizobium japonicum to bind soybean lectin. The lectin-binding ability of bacteria grown on nitrocellulose filters was determined using peroxidase-labeled soybean lectin. The assay produced clear differences between strains known to be unable to bind soybean lectin and those which can. The assay gave results identical to those of the fluorescein isothiocyanate-soybean lectin-binding assay of T. V. Bhuvaneswari, S. G. Pueppke, and W. D. Bauer (1977, Plant Physiol. 60, 486-491) with regard both to the ability of particular B. japonicum strains to bind lectin and to the inhibition caused by N-acetyl-D-galactosamine. The method was used to screen Tn5-induced mutants of B. japonicum 2143 for their inability to bind soybean lectin. The procedure provides a sensitive and convenient method to screen Bradyrhizobium strains for the ability to bind soybean lectin.  相似文献   
48.
49.
50.
The drosophilid assemblages of four cultivated areas (soy, bean, corn, and orange plantations) grown in the core of the Neotropical region were analyzed by comparing their abundances and compositions. The collections, which were gathered using 38 banana traps, captured 12,560 drosophilids, including nine Neotropical and six exotic species. Most of the flies were collected in the bean (43%) and soy (42%) fields. The composition and relative abundance of species also varied among cultivated areas, with orange orchards presenting the highest relative abundance of exotics due to the dominance of the Afrotropical Zaprionus indianus (Gupta). Crop plantations were dominated by a Neotropical species, Drosophila cardini (Sturtevant), which has been shown to be well adapted to dry and disturbed environments. We discuss the drosophilid assemblages of the cultivated areas, comparing them with assemblages from neighbor urban and natural environments. The low drosophilid richness found in this study is similar to the richness found in urban environments and lower than the drosophilid richness of forests, supporting a pattern already known for other taxa. The high abundance of drosophilids in cultivated areas, as well as the dominance of a Neotropical species (D. cardini) in the crop assemblages, was a surprising result.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号