首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   8篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2018年   1篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   4篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1983年   1篇
  1981年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有145条查询结果,搜索用时 171 毫秒
91.
92.
Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.  相似文献   
93.

Background  

Lentiviral vectors are well suited for gene therapy because they can mediate long-term expression in both dividing and nondividing cells. However, lentiviral vectors seem less suitable for liver gene therapy because systemically administered lentiviral vectors are preferentially sequestered by liver macrophages. This results in a reduction of available virus and might also increase the immune response to the vector and vector products.  相似文献   
94.
Bacterial DNA and synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in particular sequence contexts (CpG ODN) are recognized as a danger signal by the innate immune system of vertebrates. For this reason, CpG ODNs have a potential application as both an adjuvant and nonspecific immune modulator and are currently being evaluated in a number of human and veterinary clinical trials. Given their potent immunostimulatory activity, CpG ODNs could possibly induce adverse reactions. As all adjuvants and immune modulators must be nontoxic to meet safety requirements, it was essential to address the safety aspects of CpG ODNs. The current review summarizes experiments carried out to date to establish the safety of CpG ODNs in animals.  相似文献   
95.
The immunogenicity and protective efficacy of a bovine herpesvirus 1 (BHV-1) subunit vaccine formulated with Emulsigen (Em) and a synthetic oligodeoxynucleotide containing unmethylated CpG dinucleotides (CpG ODN) was determined in cattle. A truncated, secreted version of BHV-1 glycoprotein D (tgD) formulated with Em and CpG ODN at concentrations of 25, 2.5, or 0.25 mg/dose produced a more balanced immune response, higher levels of virus neutralizing antibodies, and greater protection after BHV-1 challenge compared to tgD adjuvanted with either Em or CpG ODN alone. In contrast, tgD formulated with Em and either 25 mg of a non-CpG ODN or another immunostimulatory compound, dimethyl dioctadecyl ammonium bromide, induced similar immunity and protection compared to tgD formulated with Em alone, a finding which confirms the immunostimulatory effect of ODN to be CpG motif mediated. Our results demonstrate the ability of CpG ODN to induce a strong and balanced immune response in a target species.  相似文献   
96.
Infectious diseases are responsible for a significant number of deaths during the first weeks of life. Some of the salient pathogens include HSV, HIV, hepatitis B virus, group B streptococcus, Haemophilus sp., and Chlamydia sp. The vertical transmission of many of these pathogens significantly increases the risk of neonatal infection. We recently reported that oral DNA immunization in utero induced high serum Ab titers and cell-mediated immunity in fetal lambs. In this study, we demonstrate immune memory and mucosal immunity in newborn lambs following oral DNA immunization of the fetus. A single oral exposure in utero to plasmid DNA encoding a truncated form of glycoprotein D of bovine herpesvirus-1 induced detectable immune responses in 80% (12 of 15) of newborn lambs. There was no evidence for the induction of immune tolerance in nonresponding lambs. Responding lambs displayed both systemic and mucosal immune responses and reduced virus shedding following intranasal challenge. Furthermore, strong anamnestic responses were evident for at least 3 mo after birth. The efficacy of in utero oral DNA immunization was further demonstrated with the hepatitis B surface Ag, and protective serum Ab titers occurred in 75% of immunized lambs. Thus, the present investigation confirms that oral DNA immunization in utero can induce both mucosal and systemic immune responses in the neonate and that this immunity has the potential to prevent vertical disease transmission.  相似文献   
97.
Bacterial DNA, primarily through immunostimulatory cytosine-guanine (CpG) motifs, induces the secretion of cytokines and activates a variety of effector cells. We investigated the possibility that CpG motifs might also modulate immunosurveillance by altering cell trafficking through a regional lymph node. Intradermal injection of plasmid DNA induced rapid and prolonged increases in the number of lymphocytes collected in efferent lymph. This effect on cell trafficking was not dependent on the expression of an encoded reporter gene but varied with plasmid construct and required a circular form. Injection of synthetic oligodeoxyribonucleotides containing CpG motifs did not alter lymphocyte trafficking but CpG-enhanced plasmid induced a dose-dependent increase in cell trafficking. Phenotypic analyses revealed that the increase in cell trafficking involved all lymphocyte subpopulations and represented a mass movement of cells. These observations reveal that bacterial DNA, through immunostimulatory CpG motifs, alters immunosurveillance by increasing cell recruitment to a regional lymph node.  相似文献   
98.
99.
100.
Expression of N-myristoyltransferase in Human Brain Tumors   总被引:1,自引:0,他引:1  
N-myristoylation is a process of covalent irreversible protein modification that promotes association of proteins with membranes. Based on our previous findings of elevated N-myristoyltransferase (NMT) activity in colonic epithelial neoplasms that appears at an early stage in colonic carcinogenesis, together with elevated NMT expression in human colorectal and gallbladder carcinomas, we investigated NMT activity and protein expression of NMT1 and NMT2 in human brain tumors and documented elevated NMT activity and higher protein expressions. For the first time, we have demonstrated that NMT has the potential to be used as a marker of human brain tumors. However, further studies with larger number of patients are required to establish its role as a complementary diagnostic tool. This finding has significant implications for further understanding of biological mechanisms involved in tumorigenesis, as well as for diagnosis and therapy of human brain tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号