首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   6篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   8篇
  2013年   9篇
  2012年   14篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   4篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1983年   3篇
  1981年   2篇
排序方式: 共有154条查询结果,搜索用时 31 毫秒
91.
The healthy synovial lining layer consists of a single cell layer that regulates the transport between the joint cavity and the surrounding tissue. It has been suggested that abnormalities such as somatic mutations in the p53 tumor-suppressor gene contribute to synovial hyperplasia and invasion in rheumatoid arthritis (RA). In this study, expression of epithelial markers on healthy and diseased synovial lining tissue was examined. In addition, we investigated whether a regulated process, resembling epithelial to mesenchymal transition (EMT)/fibrosis, could be responsible for the altered phenotype of the synovial lining layer in RA. Synovial tissue from healthy subjects and RA patients was obtained during arthroscopy. To detect signs of EMT, expression of E-cadherin (epithelial marker), collagen type IV (indicator of the presence of a basement membrane) and alpha-smooth muscle actin (alpha-sma; a myofibroblast marker) was investigated on frozen tissue sections using immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from healthy subjects were isolated and subjected to stimulation with synovial fluid (SF) from two RA patients and to transforming growth factor (TGF)-beta. To detect whether EMT/fibrotic markers were increased, expression of collagen type I, alpha-sma and telopeptide lysylhydroxylase (TLH) was measured by real time PCR. Expression of E-cadherin and collagen type IV was found in healthy and arthritic synovial tissue. Expression of alpha-sma was only found in the synovial lining layer of RA patients. Stimulation of healthy FLSs with SF resulted in an upregulation of alpha-sma and TLH mRNA. Collagen type I and TLH mRNA were upregulated after stimulation with TGF-beta. Addition of bone morphogenetic protein (BMP)-7 to healthy FLS stimulated with SF inhibited the expression of alpha-sma mRNA. The finding that E-cadherin and collagen type IV are expressed in the lining layer of healthy and arthritic synovium indicates that these lining cells display an epithelial-like phenotype. In addition, the presence of alpha-sma in the synovial lining layer of RA patients and induction of fibrotic markers in healthy FLSs by SF from RA patients indicate that a regulated process comparable to EMT might cause the alteration in phenotype of RA FLSs. Therefore, BMP-7 may represent a promising agent to counteract the transition imposed on synoviocytes in the RA joint.  相似文献   
92.
Glutamate is the main excitatory neurotransmitter of the CNS. Tissue-type plasminogen activator (tPA) is recognized as a modulator of glutamatergic neurotransmission. This attribute is exemplified by its ability to potentiate calcium signaling following activation of the glutamate-binding NMDA receptor (NMDAR). It has been hypothesized that tPA can directly cleave the NR1 subunit of the NMDAR and thereby potentiate NMDA-induced calcium influx. In contrast, here we show that this increase in NMDAR signaling requires tPA to be proteolytically active, but does not involve cleavage of the NR1 subunit or plasminogen. Rather, we demonstrate that enhancement of NMDAR function by tPA is mediated by a member of the low-density lipoprotein receptor (LDLR) family. Hence, this study proposes a novel functional relationship between tPA, the NMDAR, a LDLR and an unknown substrate which we suspect to be a serpin. Interestingly, whilst tPA alone failed to cleave NR1, cell-surface NMDARs did serve as an efficient and discrete proteolytic target for plasmin. Hence, plasmin and tPA can affect the NMDAR via distinct avenues. Altogether, we find that plasmin directly proteolyses the NMDAR whilst tPA functions as an indirect modulator of NMDA-induced events via LDLR engagement.  相似文献   
93.
Sequence data are well established in the reconstruction of the phylogenetic and demographic scenarios that have given rise to outbreaks of viral pathogens. The application of similar methods to bacteria has been hindered in the main by the lack of high-resolution nucleotide sequence data from quality samples. Developing and already available genomic methods have greatly increased the amount of data that can be used to characterize an isolate and its relationship to others. However, differences in sequencing platforms and data analysis mean that these enhanced data come with a cost in terms of portability: results from one laboratory may not be directly comparable with those from another. Moreover, genomic data for many bacteria bear the mark of a history including extensive recombination, which has the potential to greatly confound phylogenetic and coalescent analyses. Here, we discuss the exacting requirements of genomic epidemiology, and means by which the distorting signal of recombination can be minimized to permit the leverage of growing datasets of genomic data from bacterial pathogens.  相似文献   
94.
Understanding the migration patterns of invasive organisms is of paramount importance to predict and prevent their further spread. Previous attempts at reconstructing the entire history of the sudden oak death (SOD) epidemic in California were limited by: (1) incomplete sampling; (2) the inability to include infestations caused by a single genotype of the pathogen; (3) collapsing of non-spatially contiguous yet genetically similar samples into large meta-samples that confounded the coalescent analyses. Here, we employ an intensive sampling coverage of 832 isolates of Phytopthora ramorum (the causative agent of SOD) from 60 California forests, genotyped at nine microsatellite loci, to reconstruct its invasion. By using age of infestation as a constraint on coalescent analyses, by dividing genetically indistinguishable meta-populations into highly-resolved sets of spatially contiguous populations, and by using Bruvo genetic distances for most analyses, we reconstruct the entire history of the epidemic and convincingly show infected nursery plants are the original source for the entire California epidemic. Results indicate that multiple human-mediated introductions occurred in most counties and that further disease sources were represented by large wild infestations. The study also identifies minor introductions, some of them relatively recent, linked to infected ornamental plants. Finally, using archival isolates collected soon after the discovery of the pathogen in California, we corroborate that the epidemic is likely to have resulted form 3 to 4 core founder individuals evolved from a single genotype. This is probably the most complete reconstruction ever completed for an invasion by an exotic forest pathogen, and the approach here described may be useful for the reconstruction of invasions by any clonally reproducing organism with a relatively limited natural dispersal range.  相似文献   
95.
ProADD, a database for protein aggregation diseases, is developed to organize the data under a single platform to facilitate easy access for researchers. Diseases caused due to protein aggregation and the proteins involved in each of these diseases are integrated. The database helps in classification of proteins involved in the protein aggregation diseases based on sequence and structural analysis. Analysis of proteins can be done to mine patterns prevailing among the aggregating proteins.

Availability

http://bicmku.in/ProADD  相似文献   
96.
The bacterium Streptococcus pneumoniae (pneumococcus) is one of the most important human bacterial pathogens, and a leading cause of morbidity and mortality worldwide. The pneumococcus is also known for undergoing extensive homologous recombination via transformation with exogenous DNA. It has been shown that recombination has a major impact on the evolution of the pathogen, including acquisition of antibiotic resistance and serotype-switching. Nevertheless, the mechanism and the rates of recombination in an epidemiological context remain poorly understood. Here, we proposed several mathematical models to describe the rate and size of recombination in the evolutionary history of two very distinct pneumococcal lineages, PMEN1 and CC180. We found that, in both lineages, the process of homologous recombination was best described by a heterogeneous model of recombination with single, short, frequent replacements, which we call micro-recombinations, and rarer, multi-fragment, saltational replacements, which we call macro-recombinations. Macro-recombination was associated with major phenotypic changes, including serotype-switching events, and thus was a major driver of the diversification of the pathogen. We critically evaluate biological and epidemiological processes that could give rise to the micro-recombination and macro-recombination processes.  相似文献   
97.
The objective of the study was to examine salivary biomarker response to fluid consumption in exercising athletes. Exercise induces stress on the body and salivary alpha amylase (sAA) and salivary cortisol are useful biomarkers for activity in the sympathoadrenal medullary system and the hypothalamic pituitary adrenal axis which are involved in the stress response. Fifteen college students were given 150 ml and 500 ml of water on different days and blinded to fluid condition. The exercise protocol was identical for both fluid conditions using absolute exercise intensities ranging from moderate to high. Saliva was collected prior to exercise, post moderate and post high intensities and analyzed by Salimetrics assays. Exercise was significant for sAA with values different between pre-exercise (85 ± 10 U · ml−1) and high intensity (284 ± 30 U · ml−1) as well as between moderate intensity (204 ± 32 U · ml−1) and high intensity. There was no difference in sAA values between fluid conditions at either intensity. Exercise intensity and fluid condition were each significant for cortisol. Cortisol values were different between pre-exercise (0.30 ± 0.03 ug · dL−1) and high intensity (0.45 ± 0.05 ug · dL−1) as well as between moderate intensity (0.33 ± 0.04 ug · dL−1) and high intensity. Moderate exercise intensity cortisol was lower in the 500 ml condition (0.33 ± 0.03 ug · dL−1) compared with the 150 ml condition (0.38 ± 0.03 ug · dL−1). This altered physiological response due to fluid consumption could influence sport performance and should be considered. In addition, future sport and exercise studies should control for fluid consumption.  相似文献   
98.
99.
Clostridium difficile, a major cause of antibiotic-associated diarrhea, produces highly resistant spores that contaminate hospital environments and facilitate efficient disease transmission. We purified C. difficile spores using a novel method and show that they exhibit significant resistance to harsh physical or chemical treatments and are also highly infectious, with <7 environmental spores per cm2 reproducibly establishing a persistent infection in exposed mice. Mass spectrometric analysis identified ∼336 spore-associated polypeptides, with a significant proportion linked to translation, sporulation/germination, and protein stabilization/degradation. In addition, proteins from several distinct metabolic pathways associated with energy production were identified. Comparison of the C. difficile spore proteome to those of other clostridial species defined 88 proteins as the clostridial spore “core” and 29 proteins as C. difficile spore specific, including proteins that could contribute to spore-host interactions. Thus, our results provide the first molecular definition of C. difficile spores, opening up new opportunities for the development of diagnostic and therapeutic approaches.Clostridium difficile is a gram-positive, spore-forming, anaerobic bacterium that can asymptomatically colonize the intestinal tracts of humans and other mammals (3, 30, 39). Antibiotic treatment can result in C. difficile overgrowth and can lead to clinical disease, ranging from diarrhea to life-threatening pseudomembranous colitis, particularly in immunocompromised hosts (2, 4, 7). In recent years, C. difficile has emerged as the major cause of nosocomial antibiotic-induced diarrhea, and it is frequently associated with outbreaks (21, 22). A contributing factor is that C. difficile can be highly infectious and difficult to contain, especially when susceptible patients are present in the same hospital setting (13).Person-to-person transmission of C. difficile is associated with the excretion of highly resistant spores in the feces of infected patients, creating an environmental reservoir that can confound many infection control measures (29, 44). Bacterial spores, which are metabolically dormant cells that are formed following asymmetric cell division, normally have thick concentric external layers, the spore coat and cortex, that protect the internal cytoplasm (15, 42). Upon germination, spores lose their protective external layers and resume vegetative growth (24, 27, 36). Bacillus spores and the spores of most Clostridium species germinate in response to amino acids, carbohydrates, or potassium ions (24, 36). In contrast, C. difficile spores show an increased level of germination in response to cholate derivatives found in bile (40, 41). Thus, spores are well adapted for survival and dispersal under a wide range of environmental conditions but will germinate in the presence of specific molecular signals (24, 36).While the spores of a number of Bacillus species, such as Bacillus subtilis and Bacillus anthracis, and those of other Clostridium species, such as Clostridium perfringens (15, 20), have been well characterized, research on C. difficile spores has been relatively limited. A greater understanding of C. difficile spore biology could be exploited to rationalize disinfection regimes, molecular diagnostics, and the development of targeted treatments such as vaccines. Here we describe a novel method to isolate highly purified C. difficile spores that maintain their resistance and infectious characteristics, thus providing a unique opportunity to study C. difficile spores in the absence of vegetative cells. A thorough proteomic and genomic analysis of the spore provides novel insight into the unique composition and predictive biological properties of C. difficile spores that should underpin future research into this high-profile but poorly understood pathogen.  相似文献   
100.
Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage φSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them.Streptococcus pneumoniae (the pneumococcus) is an important human pathogen and a major etiological agent of pneumonia, bacteremia, and meningitis in adults and of otitis media in children. The casualties due to the pneumococcus are estimated to be over 1.6 million deaths per year, and most of these deaths are of young children in developing countries (40). S. pneumoniae is also a human commensal that resides in the upper respiratory tract, and it is asymptomatically carried in the nasopharynx of up to 60% of the normal population (48).Bacteriophages of S. pneumoniae (pneumophages) were first identified in 1975 from samples isolated from throat swabs of healthy children by two independent groups (46, 65). Since then, pneumophages have been identified from different sources and a variety of locations (44). The abundance of temperate bacteriophages in S. pneumoniae has been reported in different studies in the past (6, 54). Up to 76% of clinical isolates have been showed to contain prophages (or prophage remnants) when studied with a DNA probe specific for the major autolysin gene, lytA, which hybridizes with many of the endolysin genes of temperate pneumococcal phages (54). Hybridization analyses have identified highly similar prophages among pneumococcal clinical isolates even of different capsular serotypes, a result which indicates the widespread distribution of these mobile genetic elements among virulent strains (26).Only three S. pneumoniae bacteriophage genomes have been characterized in detail, and their sequences have been determined. Dp-1 and Cp-1 are lytic bacteriophages, whereas MM1 is a temperate pneumophage (45, 50, 52). Genes coding for virulence factors such as toxins or secreted enzymes have been associated with the presence of prophages in both gram-negative (67) and gram-positive bacteria, such as Streptococcus pyogenes (7) and Staphylococcus aureus (23). Because a considerable number of toxin genes are located in prophages, phage dynamics are of apparent importance for bacterial pathogenesis. Unfortunately, the role of temperate bacteriophages in the virulence of S. pneumoniae remains mostly unknown.Recently, the availability of relatively inexpensive next-generation sequencing technologies has permitted the complete genomic analysis of dozens of genomes of pneumococcal clinical isolates. In this report, we present a comparative genomic analysis of 10 pneumophages identified in the genomes of newly sequenced S. pneumoniae strains. The proteome of these phages has been predicted and annotated by comparative sequence analyses by using the available databases at the National Center for Biotechnological Information website (http://www.ncbi.nlm.nih.gov/). This systematic characterization of pneumophage genomes provides for a substantial increase in our knowledge of the global proteome and the overall genetic diversity of this important human pathogen. The comparative analysis of multiple temperate bacteriophages from a single species offers a unique opportunity to study one of the mechanisms of lateral gene transfer that drive prokaryotic genetic diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号