首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   776篇
  免费   63篇
  国内免费   273篇
  2024年   1篇
  2023年   8篇
  2022年   18篇
  2021年   29篇
  2020年   18篇
  2019年   31篇
  2018年   21篇
  2017年   29篇
  2016年   36篇
  2015年   45篇
  2014年   74篇
  2013年   68篇
  2012年   117篇
  2011年   90篇
  2010年   79篇
  2009年   65篇
  2008年   78篇
  2007年   56篇
  2006年   52篇
  2005年   38篇
  2004年   27篇
  2003年   13篇
  2002年   19篇
  2001年   16篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   5篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   8篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1965年   1篇
  1964年   2篇
  1956年   1篇
排序方式: 共有1112条查询结果,搜索用时 21 毫秒
121.
122.
侧孢座腔菌属一新种*   总被引:2,自引:1,他引:1  
本文报道了分离自东北红豆杉Taxuscuspidata树皮及小枝中的侧孢座腔菌属一新种——红豆杉侧孢座腔菌Pleurocytosporataxi。新种有拉丁文简介并附图,模式标本保存于齐齐哈尔大学微生物实验室(HQD54)。  相似文献   
123.
How Quaternary climatic oscillations affected range distributions and intraspecific divergence of alpine plants on the Qinghai‐Tibetan Plateau (QTP) remains largely unknown. Here, we report a survey of chloroplast DNA (cpDNA) and nuclear ribosomal internal transcribed spacer (ITS) DNA variation aimed at exploring the phylogeographical history of the QTP alpine endemic Aconitum gymnandrum. We sequenced three cpDNA fragments (rpl20–rps12 intergenic spacer, the trnV intron and psbA‐trnH spacer) and also the nuclear (ITS) region in 245 individuals from 23 populations sampled throughout the species’ range. Two distinct lineages, with eastern and western geographical distributions respectively, were identified from a phylogenetic analysis of ITS sequence variation. Based on a fast substitution rate, these were estimated to have diverged from each other in the early Pleistocene approximately 1.45 Ma. The analysis of cpDNA variation identified nine chlorotypes that clustered into two major clades that were broadly congruent in geographical distribution with the two ITS lineages. The east–west split of cpDNA divergence was supported by an amova which partitioned approximately half of the total variance between these two groups of populations. Analysis of the spatial distribution of chlorotypes showed that each clade was subdivided into two groups of populations such that a total of four population groups existed in the species. It is suggested that these different groups derive from four independent glacial refugia that existed during the Last Glacial Maximum (LGM), and that three of these refugia were located at high altitude on the QTP platform itself at that time. Coalescent simulation of chlorotype genealogies supported both an early Pleistocene origin of the two main cpDNA clades and also the ‘four‐refugia’ hypothesis during the LGM. Two previous phylogeographical studies of QTP alpine plants indicated that such plants retreated to refugia at the eastern/south‐eastern plateau edge during the LGM and/or previous glacial maxima. However, the results for A. gymnandrum suggest that at least some of these cold‐tolerant species may have also survived centrally on the QTP platform throughout the Quaternary.  相似文献   
124.
Although new empirical evidence shows that sympatric speciation has occurred in some species, there are few indisputable model organisms for this process of speciation. The two subspecies ( Gymnocypris eckloni eckloni and G . e . scoliostomus ) of the schizothoracine Gymnocypris fish species complex from a small glacier lake in the Tibetan Plateau, Lake Sunmcuo, fit several of the key characteristics of the sympatric speciation model. We used combined mitochondrial control region sequences and the cytochrome b gene (1894 bp) to address the phylogenetics and population genetics of 232 specimens of G . e . eckloni and G . e . scoliostomus , as well as all of its closely related sister species. We found that: (i) a total of four old lineages were uncovered in the widespread G . e . eckloni , of which only one was shown to be shared with all G . e . scoliostomus individuals and (ii) the new subspecies ( G . e . scoliostomus ) evolved in Lake Sunmcuo from the ancestral G . e . eckloni population within approximately 0.057 Ma. These two taxa of the species complex are morphologically distinct, and reproductive isolation is further suggested. Ecological disruptive selection based on morphological traits (e.g. mouth cleft characters) and food utilization may be a mechanism of incipient speciation of two sympatric populations within Lake Sunmcuo. This study provides the first genetic evidence for sympatric speciation in the schizothoracine fish.  相似文献   
125.
人乳头瘤病毒58型(HPV58)是具有高度致癌危险性的HPV型别之一,在亚洲和非洲等地呈现出特殊的流行状况.由于全球HPV58数据分布零散,加之一些高发地区(如中国内地)数据缺乏,迄今为止尚未有对世界范围内HPV58地理分布的全面分析.本研究对中国内地妇女宫颈癌组织标本进行了HPV58检测,共获得14条HPV58-E6,L1基因序列.对GenBank收录的自1985年起分离的HPV58序列进行了系统地理学分析.结果表明,在上海、江苏和四川等地检出的HPV58-E6,L1序列均与以往来自中国香港、西安和日本等HPV58亚洲株同源.HPV58毒株可能由非洲西部起源,而中国内地及东南亚地区则在接受“根部”来源的变异株之后,成为毒株播散源“中转站”和新的策源地.HPV58型可能与HPV16,HPV18相同,也是宫颈癌发生和散播的主要HPV型别.  相似文献   
126.
以intein的蛋白反式剪接为工具,研究了运用双载体的真核细胞凝血Ⅷ因子(FⅧ)基因转移,通过翻译后剪接得到完整的功能性FⅧ蛋白.将B结构域大部分缺失(Δ761~1639)的人功能性FⅧ(BDD-FⅧ)cDNA于剪接所需保守残基Ser1657前断裂为重链和轻链,分别与106和48个氨基酸的mini Ssp DnaB intein的N端(IntN)和C端(IntC)编码序列融合,构建一对在质粒pcDNA3.1的强启动子CMV驱动下的真核表达载体.用脂质体共转染至293细胞和COS-7细胞,培养48h后,收集细胞上清,用ELISA检测培养上清中剪接形成的BDD-FⅧ蛋白水平,用Coatest法检测上清的功能性FⅧ生物活性,并用Western blot观察细胞内的BDD-FⅧ蛋白质剪接.结果显示,两种细胞培养上清中有较高水平的剪接BDD-FⅧ蛋白形成,分别达到(137±23)和(109±22)ng/mL,由细胞内和细胞外(培养上清)的剪接共同组成 并检测到培养上清中较高水平的FⅧ生物活性,分别为(1.05±0.16)和(0.79±0.23)IU/mL,包括细胞内、外剪接产物BDD-FⅧ共同形成 细胞总蛋白的Western blot进一步显示共转染后细胞内高效剪接形成的BDD-FⅧ蛋白.表明intein可用于双载体系统真核细胞FⅧ基因转移,并不完全依赖细胞内的剪接产生具有高FⅧ生物活性的BDD-FⅧ蛋白,为进一步在甲型血友病基因治疗研究中应用双腺相关病毒载体(AAV)转运FⅧ基因,克服AAV载体的容量限制提供了依据.  相似文献   
127.
Gene-directed enzyme prodrug therapy (GDEPT) is a strategy developed to selectively target cancer cells. However, the clinical benefit is limited due to its poor gene transfer efficiency. To overcome this obstacle, we took advantage of piggyBac (PB) transposon, a natural non-viral gene vector that can induce stable chromosomal integration and persistent gene expression in vertebrate cells, including human cells. To determine whether the vector can also mediate stable gene expression in ovarian cancer cells, we constructed a PB transposon system that simultaneously expresses the Herpes simplex virus thymidine kinase (HSV-tk) gene and the monomeric red fluorescent protein (mRFP1) reporter gene. The recombinant plasmid, pPB/TK, was transfected into ovarian adenocarcinoma cells SKOV3 with FuGENE HD reagent, and the efficiency was given by the percentage of mRFP1-positive cells detected by flow cytometry and confocal microscopy. The specific expression of HSV-tk in transfected cells was confirmed by RT-PCR and western blotting. The sensitivity of transfected cells to pro-drug ganciclovir (GCV) was determined by methylthiazoletetrazolium (MTT) assay. A total of 56.4 ± 8.4% cells transfected with pPB/TK were mRFP1 positive, compared to no measurable mRFP1 expression in pORF-HSVtk-transfected cells. The expression level of HSV-tk in pPB/TK-transfected cells was ∼10 times higher than in pORF-HSVtk-transfected cells. The results show that pPB/TK transfection increases the sensitivity of cells to GCV in a dose-dependent manner. Our data indicate that the PB transposon system could enhance the anti-tumor efficiency of GDEPT in ovarian cancer.  相似文献   
128.
Fibroblasts degrade type I collagen, the major extracellular protein found in mammals, during events ranging from bulk tissue resorption to invasion through the three-dimensional extracellular matrix. Current evidence suggests that type I collagenolysis is mediated by secreted as well as membrane-anchored members of the matrix metalloproteinase (MMP) gene family. However, the roles played by these multiple and possibly redundant, degradative systems during fibroblast-mediated matrix remodeling is undefined. Herein, we use fibroblasts isolated from Mmp13−/−, Mmp8−/−, Mmp2−/−, Mmp9−/−, Mmp14−/− and Mmp16−/− mice to define the functional roles for secreted and membrane-anchored collagenases during collagen-resorptive versus collagen-invasive events. In the presence of a functional plasminogen activator-plasminogen axis, secreted collagenases arm cells with a redundant collagenolytic potential that allows fibroblasts harboring single deficiencies for either MMP-13, MMP-8, MMP-2, or MMP-9 to continue to degrade collagen comparably to wild-type fibroblasts. Likewise, Mmp14−/− or Mmp16−/− fibroblasts retain near-normal collagenolytic activity in the presence of plasminogen via the mobilization of secreted collagenases, but only Mmp14 (MT1-MMP) plays a required role in the collagenolytic processes that support fibroblast invasive activity. Furthermore, by artificially tethering a secreted collagenase to the surface of Mmp14−/− fibroblasts, we demonstrate that localized pericellular collagenolytic activity differentiates the collagen-invasive phenotype from bulk collagen degradation. Hence, whereas secreted collagenases arm fibroblasts with potent matrix-resorptive activity, only MT1-MMP confers the focal collagenolytic activity necessary for supporting the tissue-invasive phenotype.In the postnatal state, fibroblasts are normally embedded in a self-generated three-dimensional connective tissue matrix composed largely of type I collagen, the major extracellular protein found in mammals (13). Type I collagen not only acts as a structural scaffolding for the associated mesenchymal cell populations but also regulates gene expression and cell function through its interactions with collagen binding integrins and discoidin receptors (2, 4). Consistent with the central role that type I collagen plays in defining the structure and function of the extracellular matrix, the triple-helical molecule is resistant to almost all forms of proteolytic attack and can display a decades-long half-life in vivo (46). Nonetheless, fibroblasts actively remodel type I collagen during wound healing, inflammation, or neoplastic states (2, 713).To date type I collagenolytic activity is largely confined to a small subset of fewer than 10 proteases belonging to either the cysteine proteinase or matrix metalloproteinase (MMP)2 gene families (4, 1418). As all collagenases are synthesized as inactive zymogens, complex proteolytic cascades involving serine, cysteine, metallo, and aspartyl proteinases have also been linked to collagen turnover by virtue of their ability to mediate the processing of the pro-collagenases to their active forms (13, 15, 19). After activation, each collagenase can then cleave native collagen within its triple-helical domain, thus precipitating the unwinding or “melting” of the resulting collagen fragments at physiologic temperatures (4, 15). In turn, the denatured products (termed gelatin) are susceptible to further proteolysis by a broader class of “gelatinases” (4, 15). Collagen fragments are then either internalized after binding to specific receptors on the cell surface or degraded to smaller peptides with potent biological activity (2024).Previous studies by our group as well as others have identified MMPs as the primary effectors of fibroblast-mediated collagenolysis (20, 25, 26). Interestingly, adult mouse fibroblasts express at least six MMPs that can potentially degrade type I collagen, raising the possibility of multiple compensatory networks that are designed to preserve collagenolytic activity (25). Four of these collagenases belong to the family of secreted MMPs, i.e. MMP-13, MMP-8, MMP-2, and MMP-9, whereas the other two enzymes are members of the membrane-type MMP subgroup, i.e. MMP-14 (MT1-MMP) and MMP-16 (MT3-MMP) (13, 2729). From a functional perspective, the specific roles that can be assigned to secreted versus membrane-anchored collagenases remain undefined. As such, fibroblasts were isolated from either wild-type mice or mice harboring loss-of-function deletions in each of the major secreted and membrane-anchored collagenolytic genes, and the ability of the cells to degrade type I collagen was assessed. Herein, we demonstrate that fibroblasts mobilize either secreted or membrane-anchored MMPs to effectively degrade type I collagen in qualitatively and quantitatively distinct fashions. However, under conditions where fibroblasts use either secreted and membrane-anchored MMPs to exert quantitatively equivalent collagenolytic activity, only MT1-MMP plays a required role in supporting a collagen-invasive phenotype. These data establish a new paradigm wherein secreted collagenases are functionally limited to bulk collagenolytic processes, whereas MT1-MMP uniquely arms the fibroblast with a focalized degradative activity that mediates subjacent collagenolysis as well as invasion.  相似文献   
129.
Chemerin is a novel chemoattractant recognized by chemokine-like receptor 1 (CMKLR1), a serpentine receptor expressed primarily by plasmacytoid dendritic cells, natural killer cells, and macrophages. Human pro- chemerin circulates in plasma as an inactive precursor. Its chemotactic activity is expressed upon cleavage of the C-terminal amino acid residues by proteases of the coagulation, fibrinolytic, and inflammatory system. The C-terminal cleavage site of prochemerin is highly conservative, indicating that the proteolytic regulation of chemerin bioactivity is a common mechanism undertaken by different species. In this review, we summarized chemerin-proteases interactions( chemerin receptors, and their importance in normal and pathologic conditions.  相似文献   
130.

Background

Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception.

Results

On the hippocampal slices of rats which had suffered from persistent nociception for 2 h by receiving subcutaneous bee venom (BV) or formalin injection into one hand paw, multisite recordings were performed by an 8 × 8 multi-electrode array probe. The waveform of the field excitatory postsynaptic potential (fEPSP), induced by perforant path electrical stimulation and pharmacologically identified as being activity-dependent and mediated by ionotropic glutamate receptors, was consistently positive-going in the dentate gyrus (DG), while that in the CA1 was negative-going in shape in naïve and saline control groups. For the spatial characteristics of synaptic plasticity, BV- or formalin-induced persistent pain significantly increased the number of detectable fEPSP in both DG and CA1 area, implicating enlargement of the synaptic connection size by the injury or acute inflammation. Moreover, the input-output function of synaptic efficacy was shown to be distinctly enhanced by the injury with the stimulus-response curve being moved leftward compared to the control. For the temporal plasticity, long-term potentiation produced by theta burst stimulation (TBS) conditioning was also remarkably enhanced by pain. Moreover, it is strikingly noted that the shape of fEPSP waveform was drastically deformed or split by a TBS conditioning under the condition of persistent nociception, while that in naïve or saline control state was not affected. All these changes in synaptic connection and function, confirmed by the 2-dimentional current source density imaging, were found to be highly correlated with peripheral persistent nociception since pre-blockade of nociceptive impulses could eliminate all of them. Finally, the initial pharmacological investigation showed that AMPA/KA glutamate receptors might play more important roles in mediation of pain-associated spatiotemporal plasticity than NMDA receptors.

Conclusion

Peripheral persistent nociception produces great impact upon the higher brain structures that lead to not only temporal plasticity, but also spatial plasticity of synaptic connection and function in the HF. The spatial plasticity of synaptic activities is more complex than the temporal plasticity, comprising of enlargement of synaptic connection size at network level, deformed fEPSP at local circuit level and, increased synaptic efficacy at cellular level. In addition, the multi-synaptic model established in the present investigation may open a new avenue for future studies of pain-related brain dysfunctions at the higher level of the neuromatrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号