首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   2篇
  国内免费   1篇
  175篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   11篇
  2009年   11篇
  2008年   9篇
  2007年   12篇
  2006年   13篇
  2005年   9篇
  2004年   1篇
  2003年   8篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   12篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1958年   1篇
  1957年   2篇
  1956年   4篇
  1955年   4篇
  1954年   1篇
  1950年   2篇
排序方式: 共有175条查询结果,搜索用时 0 毫秒
81.
Dalbergia monticola is one of the major components of the oriental forest of Madagascar. This economically and ecologically important tree is threatened because of the dramatic decrease of the Madagascar forest. We have estimated the genetic diversity and structure of the species by studying nuclear microsatellites. We have developed eight pairs of primers to analyse 215 individuals distributed from the north to the south of the island. These markers will be useful for genetic and ecological studies of this species.  相似文献   
82.
Tingidae (Heteroptera: Insecta) exhibit cephalic tubercles that present a very diverse shape in larvae but that are much simpler in adults. A phylogeny based on adult and last instar characters showed that these tubercles evolved independently from simple to complex states in two clades, and reversed from complex to simple in some taxa. These homoplasies are analysed in the light of ontogenetic sequences and interpreted as heterochronic events. The general trend of evolution of the cephalic tubercles in Tingidae is in mosaic, and could be generally peramorphic, with some isolated cases of paedomorphosis.  Journal compilation © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 71–80. No claim to original French government works.  相似文献   
83.
Summary

The male cells in the ovotestis of hibernating snails undergo multiplication when the temperature of the environment is raised from 5°C to 25°C. If the temperature is maintained at 25°C for 4 weeks the process of spermatogenesis is completed but the rate of spermatogenesis (DNA synthesis) starts decreasing from the 3rd week (Table 1; Fig. 1).

Brain ablation in hibernating snails maintained at 25°C causes a significant increase in DNA synthesis exclusively in male cells of the ovotestis. This suggests that the brain exerts an inhibitory influence on spermatogenic multiplication. This influence is effective only during the first and the fourth week of exposure of hibernating snails to 25°C (Fig. 1; Table 1) indicating the existence of an endogenous cyclical control. Spermiogenesis is, however, not affected by brain extirpation (Fig. 4 A,B,C).

When reimplanted in the head haemocoel the brain appears normal histologically (Fig. 5 A,B) and it reestablishes the inhibitory influence on DNA synthesis in the ovotestis only during the first day of temperature-induction. During the 1st, 3rd and 4th week the reimplanted brain, deprived of its neural connections, fails to exert its inhibitory influence suggesting that for this influence to function neural connections to the brain are essential. Surprisingly, the implanted brain seems to inhibit DNA synthesis during the 2nd week of temperature-induction (Table 1).

These experiments show that the brain control temperature-induced spermatogenic multiplication in the ovotestis in snails at the onset of hibernation and this control is exerted by one or more inhibitory factors originating from the brain which may function in concert or independently to produce the neuroendocrine effect. It seems therefore justified to consider spermatogenesis in hibernating snails as being neuroendocrinologically controlled.  相似文献   
84.
In spinal deformation studies, three-dimensional reconstruction of the spine is frequently represented as a curve in space fitted to the vertebral centroids. Conventional interpolation techniques such as splines. Bezier and the least squares method are limited since they cannot describe precisely the great variety of spinal morphologies. This article presents a more general technique called dual kriging, which includes two mathematical constituents (drift and covariance) to adjust the interpolated functions to spinal deformity better. The cross-validation technique was used to compare the parametric representations of spinal curves with different combinations of drift and covariance functions. Model validation was performed from a series of analytic curves reflecting typical scoliotic spines. Calculation of geometric torsion, a sensitive parameter, was done to evaluate the accuracy of the kriging models. The best model showed an absolute mean difference of 1.2 x 10~5 (±7·1 × l()~ 5) mm?1 between the analytical and estimated geometric torsions compared to 5·25 × 10~ (±3.7 × 310~2) mm* 1 for the commonly used least-squares Fourier series method, a significant improvement in spinal torsion evaluation.  相似文献   
85.
Twelve polymorphic microsatellite markers were isolated from the phytopathogenic fungus Alternaria brassicicola, the causal agent of black spot of crucifers. An enrichment protocol was used to isolate microsatellite loci, which were then analysed in a collection of 46 isolates sampled from seven different countries. The number of alleles detected in 12 loci ranged from two to 10 (mean 3.5). Investigation of cross‐species amplifications showed that the designed primers were specific to A. brassicicola.  相似文献   
86.
87.
Incidental capture of seabirds in longline fishing gear is a central issue in the conservation of many long-lived marine species. Despite growing evidence of climate-induced effects on population trends of long-lived species, climate change remains generally overlooked in most risk assessments of seabirds. Because variation in climate may interact with the detrimental effects of bycatch, considering climate is of great importance, especially in the context of ongoing global warming. This paper examines the combined effects of bycatch and climate change on the persistence of one of the world's rarest birds, the Amsterdam Albatross Diomedea amsterdamensis , which has a single population in the upland plateau of Amsterdam Island (Southeast Indian Ocean). Using continuous monitoring from 1983 onwards, we first estimated the relationship between climate and the species' demographic parameters. We then built a stochastic matrix population model to estimate the population growth rate and the probability that the population declines below the level recorded in 1983 of nine breeding pairs under different scenarios involving the joint effects of additional mortality caused by longline fisheries and climate change. The results suggest that the demography of the Amsterdam Albatross is influenced by climate in both breeding and wintering grounds and that these relationships may to some extent compensate for the impact of additive bycatch mortality. However, these compensatory effects would be negligible if the annual additional mortality exceeds around six individuals per year, suggesting that the resumption of longline fishery in the foraging range of the Amsterdam Albatross would rapidly put this species at risk of extinction.  相似文献   
88.
Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite ( Spinturnix bechsteini ) and compared it to that of its social host, the Bechstein's bat ( Myotis bechsteinii ). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.  相似文献   
89.
Previous surveys of population structure in the Atlantic-Mediterranean anchovy Engraulis encrasicolus L. have reported heterogeneity in morphology, allozyme frequencies, and mitochondrial DNA haplotype frequencies at a regional scale. In particular, two stocks of anchovy have been detected in the Adriatic Sea. In this paper, the available data is reviewed with the aim to relate genetic variation to geography at the widest possible geographical scale, for investigating the evolutionary mechanisms underlying stock structure in anchovy. Correspondence analysis of allozyme frequencies (24 samples, three polymorphic loci) compiled from the literature indicates three distinct entities in the Mediterranean Sea. Open-sea or oceanic anchovy populations are genetically different from inshore-water populations within a region (Nei's ^ G ST = 0.035–0.067), while broadscale geographical variation is weak for each of these two habitat-specific forms (^ G ST = 0.005–0.006). Mitochondrial-DNA haplotype frequencies support the distinction between an inshore form and an oceanic form (^ G ST = 0.067–0.107), with virtually no genetic differences among oceanic populations across the Gulf of Biscay, the western Mediterranean and the Ionian Sea (^ G ST = −0.001). If natural selection on marker loci is unimportant, these results indicate the occurrence of two parapatric, genetically distinct, habitat-specific forms that are widely distributed throughout the Mediterranean Sea. Persistent allele and haplotype-frequency differences between these forms indicate reproductive isolation and the presence of an E. encrasicolus species complex in the Mediterranean. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society 75 : 261–269.  相似文献   
90.
Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号